
Angular momentum algebra
It is easy to see that the operator

J2 = JxJx + JyJy + JzJz

commutes with the operators Jx, Jy and Jz,

[J2, Ji] = 0.

We choose the component Jz and denote the common
eigenstate of the operators J2 and Jz by |j, m〉. We know
(QM II) that

J2|j, m〉 = j(j + 1)h̄2|j, m〉, j = 0,
1
2
, 1,

3
2
, . . .

Jz|j,m〉 = mh̄|j, m〉, m = −j,−j + 1, . . . , j − 1, j.

We define the ladder operators J+ and J−:

J± ≡ Jx ± iJy.

They satisfy the commutation relations

[J+, J−] = 2h̄Jz

[Jz, J±] = ±h̄J±[
J2, J±

]
= 0.

We see that

JzJ+|j, m〉 = h̄J+Jz|j,m〉 = (m + 1)h̄J+|j, m〉

and

J2J+|j, m〉 = J+J2|j, m〉 = j(j + 1)h̄J+|j, m〉,

so we must have

J+|j, m〉 = c+|j,m + 1〉

The factor c+ can be deduced from the normalization
condition

〈j,m|j′,m′〉 = δjj′δmm′ .

We end up with

J±|j,m〉 =
√

(j ∓m)(j ±m + 1)h̄|j, m± 1〉.

Matrix elements will be

〈j′,m′|J2|j,m〉 = j(j + 1)h̄2δj′jδm′m

〈j′,m′|Jz|j,m〉 = mh̄δj′jδm′m

〈j′,m′|J±|j,m〉 =
√

(j ∓m)(j ±m + 1)h̄δj′jδm′,m±1.

We define Wigner’s function:

D(j)
m′m(R) = 〈j, m′| exp

(
− iJ · n̂φ

h̄

)
|j, m〉.

Since

[J2,D(R)] = [J2, exp
(
− iJ · n̂φ

h̄

)
] = 0,

we see that D(R) does not chance the j-quantum number,
so it cannot have non zero matrix elements between
states with different j values.
The matrix with matrix elements D(j)

m′m(R) is the
(2j + 1)-dimensional irreducible representation of the
rotation operator D(R).
The matrices D(j)

m′m(R) form a group:

• The product of matrices belongs to the group:

D(j)
m′′m(R1R2) =

∑
m′

D(j)
m′′m′(R1)D(j)

m′m(R2),

where R1R2 is the combined rotation of the rotations
R1 and R2,

• the inverse operation belongs to the group:

D(j)
m′m(R−1) = D(j)∗

mm′(R).

The state vectors |j,m〉 transform in rotations like

D(R)|j, m〉 =
∑
m′

|j,m′〉〈j, m′|D(R)|j,m〉

=
∑
m′

|j,m′〉D(j)
m′m(R).

With the help of the Euler angles

D(j)
m′m(R) =

〈j, m′| exp
(
− iJzα

h̄

)
exp

(
− iJyβ

h̄

)
exp

(
− iJzγ

h̄

)
|j, m〉

= e−i(m′α+mγ)d
(j)
m′m(β),

where

d
(j)
m′m(β) ≡ 〈j,m′| exp

(
− iJyβ

h̄

)
|j,m〉.

Functions d
(j)
m′m can be evaluated using Wigner’s formula

d
(j)
m′m(β) =∑

k

(−1)k−m+m′

×
√

(j + m)!(j −m)!(j + m′)!(j −m′)!
(j + m− k)!k!(j − k −m′)!(k −m + m′)!

×
(

cos
β

2

)2j−2k+m−m′

×
(

sin
β

2

)2k−m+m′

.

Orbital angular momentum

The components of the classically analogous operator
L = x× p satisfy the commutation relations

[Li, Lj ] = iεijkh̄Lk.

Using the spherical coordinates to label the position
eigenstates,

|x′〉 = |r, θ, φ〉,
one can show that

〈x′|Lz|α〉 = −ih̄
∂

∂φ
〈x′|α〉

〈x′|Lx|α〉 = −ih̄

(
− sinφ

∂

∂θ
− cot θ cos φ

∂

∂φ

)
〈x′|α〉

〈x′|Ly|α〉 = −ih̄

(
cos φ

∂

∂θ
− cot θ sinφ

∂

∂φ

)
〈x′|α〉

〈x′|L±|α〉 = −ih̄e±iφ

(
±i

∂

∂θ
− cot θ

∂

∂φ

)
〈x′|α〉

〈x′|L2|α〉 = −h̄2

[
1

sin2 θ

∂2

∂φ2
+

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)]
×〈x′|α〉.



We denote the common eigenstate of the operators L2

and Lz by the ket-vector |l,m〉, i.e.

Lz|l,m〉 = mh̄|l,m〉
L2|l,m〉 = l(l + 1)h̄2|l,m〉.

Since R3 can be represented as the direct product

R3 = R× Ω,

where Ω is the surface of the unit sphere
(position=distance from the origin and direction) the
position eigenstates can be written correspondingly as

|x′〉 = |r〉|n̂〉.

Here the state vectors |n̂〉 form a complete basis on the
surface of the sphere, i.e.∫

dΩn̂ |n̂〉〈n̂| = 1.

We define the spherical harmonic function:

Y m
l (θ, φ) = Y m

l (n̂) = 〈n̂|l,m〉.

The scalar product of the vector 〈n̂| with the equations

Lz|l, m〉 = mh̄|l,m〉
L2|l, m〉 = l(l + 1)h̄2|l, m〉

gives

−ih̄
∂

∂φ
Y m

l (θ, φ) = mh̄Y m
l (θ, φ)

and[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2 + l(l + 1)
]

Y m
l = 0.

Y m
l and D(l)

The state
|n̂〉 = |θ, φ〉

is obtained from the state |ẑ〉 rotating it first by the angle
θ around y-axis and then by the angle φ around z-axis:

|n̂〉 = D(R)|ẑ〉
= D(α = φ, β = θ, γ = 0)|ẑ〉
=

∑
l,m

D(φ, θ, 0)|l, m〉〈l,m|ẑ〉.

Furthermore

〈l,m|n̂〉 = Y m
l

∗(θ, φ) =
∑
m

D(l)
m′m(φ, θ, 0)〈l,m|ẑ〉.

Now

〈l,m|ẑ〉 = Y m
l

∗(0, φ) =

√
(2l + 1)

4π
δm0,

so

Y m
l

∗(θ, φ) =

√
(2l + 1)

4π
D(l)

m0(φ, θ, γ = 0)

or

D(l)
m0(α, β, 0) =

√
4π

(2l + 1)
Y m

l
∗(θ, φ)

∣∣∣∣∣
β,α

.

As a special case

D(l)
00 (θ, φ, 0) = d

(l)
00 (θ) = Pl(cos θ).

Coupling of angular momenta

We consider two Hilbert spaces H1 and H2. If now Ai is
an operator in the space Hi, the notation A1 ⊗A2 means
the operator

A1 ⊗A2|α〉1 ⊗ |β〉2 = (A1|α〉1)⊗ (A2|β〉2)

in the product space. Here |α〉i ∈ Hi. In particular,

A1 ⊗ 12|α〉1 ⊗ |β〉2 = (A1|α〉1)⊗ |β〉2,

where 1i is the identity operator of the space Hi.
Correspondingly 11 ⊗A2 operates only in the subspace
H2 of the product space. Usually the subspace of the
identity operators, or even the identity operator itself, is
not shown, for example

A1 ⊗ 12 = A1 ⊗ 1 = A1.

It is easy to verify that operators operating in different
subspace commute, i.e.

[A1 ⊗ 12, 11 ⊗A2] = [A1, A2] = 0.

In particular we consider two angular momenta J1 and J2

operating in two different Hilbert spaces. They commute:

[J1i, J2j ] = 0.

The infinitesimal rotation affecting both Hilbert spaces is(
1− iJ1 · n̂δφ

h̄

)
⊗

(
1− iJ2 · n̂δφ

h̄

)
=

1− i(J1 ⊗ 1 + 1⊗ J2) · n̂δφ

h̄
.

The components of the total angular momentum

J = J1 ⊗ 1 + 1⊗ J2 = J1 + J2

obey the commutation relations

[Ji, Jj ] = ih̄εijkJk,

i.e. J is angular momentum.
A finite rotation is constructed analogously:

D1(R)⊗D2(R) = exp
(
−J1 · n̂φ

h̄

)
⊗ exp

(
−J2 · n̂φ

h̄

)
.

Base vectors of the whole system
We seek in the product space {|j1m1〉 ⊗ |j2m2〉} for the
maximal set of commuting operators.
(i) J2

1, J2
2, J1z and J2z.



Their common eigenstates are simply direct products

|j1j2;m1m2〉 ≡ |j1,m1〉 ⊗ |j2,m2〉.

If j1 and j2 can be deduced from the context we often
denote

|m1m2〉 = |j1j2;m1m2〉.

The quantum numbers are obtained from the
(eigen)equations

J2
1|j1j2;m1m2〉 = j1(j1 + 1)h̄2|j1j2;m1m2〉

J1z|j1j2;m1m2〉 = m1h̄|j1j2;m1m2〉
J2

2|j1j2;m1m2〉 = j2(j2 + 1)h̄2|j1j2;m1m2〉
J2z|j1j2;m1m2〉 = m2h̄|j1j2;m1m2〉.

(ii) J2, J2
1, J2

2 and Jz.
Their common eigenstate is denoted as

|j1j2; jm〉

or shortly
|jm〉 = |j1j2; jm〉

if the quantum numbers j1 and j2 can be deduced from
the context. The quantum numbers are obtained from the
equations

J2
1|j1j2; jm〉 = j1(j1 + 1)h̄2|j1j2; jm〉

J2
2|j1j2; jm〉 = j2(j2 + 1)h̄2|j1j2; jm〉

J2|j1j2; jm〉 = j(j + 1)h̄2|j1j2; jm〉
Jz|j1j2; jm〉 = mh̄|j1j2; jm〉.

Now
[J2, J1z] 6= 0, [J2, J2z] 6= 0,

so we cannot add to the set (i) the operator J2, nor to
the set (ii) the operators J1z or J2z. Both sets are thus
maximal and the corresponding bases complete (and
orthonormal), i.e.∑

j1j2

∑
m1m2

|j1j2;m1m2〉〈j1j2;m1m2| = 1

∑
j1j2

∑
jm

|j1j2; jm〉〈j1j2; jm| = 1.

In the subspace where the quantum numbers j1 and j2
are fixed we have the completeness relations∑

m1m2

|j1j2;m1m2〉〈j1j2;m1m2| = 1∑
jm

|j1j2; jm〉〈j1j2; jm| = 1.

One can go from the basis (i) to the basis (ii) via the
unitary transformation

|j1j2; jm〉 =
∑

m1m2

|j1j2;m1m2〉〈j1j2;m1m2|j1j2; jm〉,

so also the transformation matrix

(C)jm,m1m2 = 〈j1j2;m1m2|j1j2; jm〉

is unitary. The elements 〈j1j2;m1m2|j1j2; jm〉 of the
transformation matrix are called Clebsch-Gordan’s
coefficients.
Since

Jz = J1z + J2z,

we must have
m = m1 + m2,

so the Clebsch-Gordan coefficients satisfy the condition

〈j1j2;m1m2|j1j2; jm〉 = 0, if m 6= m1 + m2.

Further, we must have (QM II)

|j1 − j2| ≤ j ≤ j1 + j2.

It turns out, that the C-G coefficients can be chosen to be
real, so the transformation matrix C is in fact orthogonal:∑
jm

〈j1j2;m1m2|j1j2; jm〉〈j1j2;m′
1m

′
2|j1j2; jm〉

= δm1m′
1
δm2m′

2∑
m1m2

〈j1j2;m1m2|j1j2; jm〉〈j1j2;m1m2|j1j2; j′m′〉

= δjj′δmm′ .

As a special case (j′ = j and m′ = m = m1 + m2) we get
the normalization condition∑

m1m2

|〈j1j2;m1m2|j1j2; jm〉|2 = 1.

Recursion formulas
Operating with the ladder operators to the state
|j1j2; jm〉 we get

J±|j1j2; jm〉 =

(J1± + J2±)
∑

m1m2

|j1j2;m1m2〉

×〈j1j2;m1m2|j1j2; jm〉,

or √
(j ∓m)(j ±m + 1)|j1j2; j, m± 1〉

=
∑
m′

1

∑
m′

2

(√
(j1 ∓m′

1)(j1 ±m′
1 + 1)

×|j1j2;m′
1 ± 1,m′

2〉

+
√

(j2 ±m′
2)(j2 ±m′

2 + 1)

×|j1j2;m′
1,m

′
2 ± 1〉

)
×〈j1j2;m′

1m
′
2|j1j2; jm〉.

Taking the scalar product on the both sides with the
vector 〈j1j2;m1m2| we get√

(j ∓m)(j ±m + 1)〈j1j2;m1m2|j1j2; j, m± 1〉
=

√
(j1 ∓m1 + 1)(j1 ±m1)
×〈j1j2;m1 ∓ 1,m2|j1j2; jm〉

+
√

(j2 ∓m2 + 1)(j2 ±m2)
×〈j1j2;m1,m2 ∓ 1|j1j2; jm〉.



The Clebsch-Gordan coefficients are determined uniquely
by

1. the recursion formulas.

2. the normalization condition∑
m1m2

|〈j1j2;m1m2|j1j2; jm〉|2 = 1.

3. the sign conventions, for example

〈j1j2; j′m′|J1z|j1j2; jm〉 ≥ 0.

Note Due to the sign conventions the order of the
coupling is essential:

|j1j2; jm〉 = ±|j2j1; jm〉.

Graphical representation of recursion formulas
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Recursion formula in m1m2-plane

We fix j1, j2 and j. Then

|m1| ≤ j1, |m2| ≤ j2, |m1 + m2| ≤ j.
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Using recursion formulas

We see that

1. every C-G coefficient depends on A,

2. the normalization condition determines the absolute
value of A,

3. the sign is obtained from the sign conventions.

Example L + S-coupling.
Now

j1 = l = 0, 1, 2, . . .

m1 = ml = −l,−l + 1, . . . , l − 1, l

j2 = s =
1
2

m2 = ms = ±1
2

j =

{
l ± 1

2 , when l > 0
1
2 , when l = 0.

m s

m ll

1 / 2

- 1 / 2

J
-

J
-

J
-

Recursion when j1 = l and j2 = s = 1/2

Using the selection rule

m1 = ml = m− 1
2
, m2 = ms =

1
2

and the shorthand notation the J−-recursion gives√
(l + 1

2 + m + 1)(l + 1
2 −m)〈m− 1

2 , 1
2 |l + 1

2 ,m〉

=
√

(l + m + 1
2 )(l −m + 1

2 )

×〈m + 1
2 , 1

2 |l + 1
2 ,m + 1〉,

or

〈m− 1
2 , 1

2 |l + 1
2 ,m〉 =

√
l + m + 1

2

l + m + 3
2

〈m + 1
2 , 1

2 |l + 1
2 ,m + 1〉.

Applying the same recursion repeatedly we have

〈m− 1
2 , 1

2 |l + 1
2 ,m〉

=

√
l + m + 1

2

l + m + 3
2

√
l + m + 3

2

l + m + 5
2

〈m + 3
2 , 1

2 |l + 1
2 ,m + 2〉

=

√
l + m + 1

2

l + m + 3
2

√
l + m + 3

2

l + m + 5
2

√
l + m + 5

2

l + m + 7
2

〈m + 5
2 , 1

2 |l + 1
2 ,m + 3〉

=
...

=

√
l + m + 1

2

2l + 1
〈l, 1

2 |l + 1
2 , l + 1

2 〉.

If j = jmax = j1 + j2 and m = mmax = j1 + j2 one must
have

|j1j2; jm〉 =
〈j1j2;m1 = j1,m2 = j2|j1j2; jm〉|j1m1〉|j2m2〉.



Now the normalization condition

|〈j1j2;m1 = j1,m2 = j2|j1j2; jm〉|2 = 1

and the sign convention give

〈j1j2;m1 = j1,m2 = j2|j1j2; jm〉 = 1.

Thus, in the case of the spin-orbit coupling,

〈l, 1
2 |l + 1

2 , l + 1
2 〉 = 1,

or

〈m− 1
2 , 1

2 |l + 1
2 ,m〉 =

√
l + m + 1

2

2l + 1
.

With the help of the recursion relations, normalization
condition and sign convention the rest of the C-G
coefficients can be evaluated, too. We get

(
|j = l + 1

2 ,m〉
|j = l − 1

2 ,m〉

)
=


√

l + m + 1
2

2l + 1

√
l −m + 1

2
2l + 1

−
√

l −m + 1
2

2l + 1

√
l + m + 1

2
2l + 1


(
|ml = m− 1

2 ,ms = 1
2 〉

|ml = m + 1
2 ,ms = − 1

2 〉

)
.

Rotation matrices
If D(j1)(R) is a rotation matrix in the base
{|j1m1〉|m1 = −j1, . . . , j1} and D(j2)(R) a rotation matrix
in the base {|j2m2〉|m2 = −j2, . . . , j2}, then
D(j1)(R)⊗D(j2)(R) is a rotation matrix in the
(2j1 + 1)× (2j2 + 1)-dimensional base
{|j1,m1〉 ⊗ |j2,m2〉}. Selecting suitable superpositions of
the vectors |j1,m1〉 ⊗ |j2,m2〉 the matrix takes the form
like

D(j1)(R)⊗D(j2)(R) −→
D(j1+j2) 0

D(j1+j2−1)

. . .

0 D(|j1−j2|)

 .

One can thus write

D(j1) ⊗D(j2) = D(j1+j2) ⊕D(j1+j2−1) ⊕ · · · ⊕ D(|j1−j2|).

As a check we can calculate the dimensions:

(2j1 + 1)(2j2 + 1) =
2(j1 + j2) + 1 + 2(j1 + j2 − 1) + 1
+ · · ·+ 2|j1 − j2|+ 1.

The matrix elements of the rotation operator satisfy

〈j1j2;m1m2|D(R)|j1j2;m′
1m

′
2〉

= 〈j1m1|D(R)|j1m′
1〉〈j2m2|D(R)|j2m′

2〉
= D(j1)

m1m′
1
(R)D(j2)

m2m′
2
(R).

On the other hand we have

〈j1j2;m1m2|D(R)|j1j2;m′
1m

′
2〉

=
∑
jm

∑
j′m′

〈j1j2;m1m2|j1j2; jm〉

×〈j1j2; jm|D(R)|j1j2; j′m′〉
×〈j1j2; j′m′|j1j2;m′

1m
′
2〉

=
∑
jm

∑
j′m′

〈j1j2;m1m2|j1j2; jm〉D(j)
mm′(R)δjj′

×〈j1j2;m′
1m

′
2|j1j2; j′m′〉.

We end up with the Clebsch-Gordan series

D(j1)
m1m′

1
(R)D(j2)

m2m′
2
(R) =∑

j

∑
m

∑
m′

〈j1j2;m1m2|j1j2; jm〉

×〈j1j2;m′
1m

′
2|j1j2; jm′〉D(j)

mm′(R).

As an application we have∫
dΩY m

l
∗(θ, φ)Y m1

l1
(θ, φ)Y m2

l2
(θ, φ)

=

√
(2l1 + 1)(2l2 + 1)

4π(2l + 1)

×〈l1l2; 00|l1l2; l0〉〈l1l2;m1m2|l1l2; lm〉.


