Tensor operators
We have used the vector notation for three component
operators for example to express the scalar product, like

p- ' =p.a’ +pyy +p.2

Classically a vector is a quantity that under rotations
transforms like V € R? (or € C3), i.e. if R € O(3), then

In quantum mechanics V is a vector operator provided
that (V) € C? is a vector:

rlalVilyr = (aD'(R)ViD(R

3
> RijlalVjla),
j=1

V]ay € H,R € O(3).

)|a)

Thus we must have
=2_ RV
J

Thus the infinitesimal rotations
ieJ -n

Dl
(ne -

)=1-

satisfy
ied - n ied - n
1 Vi1
<+ h > (* z )
:1@+%(J~ﬁVi—ViJ-ﬂ)+(’)(62)
=Y RyV;
j
or

Vi + V;,J 7

-2 Ryl

Substituting the explicit expressions for infinitesimal
rotations, like
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we get
Ve + h[Vx,J] Ve — €V, + O(e?).

Handling similarly the other components we end up with

’ [‘/;7 Jj] = iheijka. ‘

Finite rotation

A finite rotation specified by Euler angles is accomplished
by rotating around coordinate axises, so we have to
consider such expressions as

exp (ijzd)) V;exp (—Ugd)> .

Applying the Baker-Hausdorff lemma
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we end up with the commutators

)[G,[G,[G,...[G,A]]],_,]+...

[ 55 [T [+ 15, Vil - ]l)-

These will be evaluated in turn into operators V; and Vj

(k #1,7).
A vector operator (V') is defined so that it satisfies the
commutation relation

[Vi, Jj] = ihﬁijka.

We can easily see that for example p,  and J are vector
operators.

In classical mechanics a quantity which under rotations
transforms like
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is called a Cartesian tensor of the rank n.
Example The dyad product of the vectors U and V'

Ty = UiV

is a tensor of rank 2.
Cartesian tensors are reducible, for example the dyad
product can be written as

UV, UV -UY

Uu;v, = 3 5ij+(UV}2U]V)

uv,+U;v; U-V
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We see that the terms transform under rotations
differently:

° Qéléij is invariant. There is 1 term.
) M retains its antisymmetry. There are 3

terms.

° UiVjJrUjVi_U-V(;_
2 3 W

retains its symmetry and

tracelessness. There are 5 terms.

We recognize that the number of terms checks and that
the partition might have something to do with the
angular momentum since the multiplicities correspond to
the multiplicities of the angular momenta [ = 0,1, 2

We define the spherical tensor Tq(k) of rank k so that the
argument 7 of the spherical function

Y™ (n) = (nflm)



is replaced by the vector V:

(k)

o =YL(V).

Example The spherical function Y7:
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Similarly we could construct for example a spherical

tensor of rank 2:
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The tensors Tq(k) are irreducible, i.e. there does not exist
any proper subset
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which would remain invariant under rotations.

Transformation of spherical tensors
Under the rotation R an eigenstate of the direction
transforms like

) — [n) = D(R)|n).

The state vectors |lm), on the other hand, transform
under the rotation R~ like

D(R™Y)|I,m) Zu m/) DY, (R71).
So we get
YMR) = (@|lm) = (A|DT(R)|lm)
= (DR Y|im) = _(@|lm)DL, (R
= YV @)D, (R
= Yy @p?, ().

We define a tensor operator Y, (V') so that

D' (R)Y™( ZY’" V)DL (R).

Generalizing we define: T} q(k) is a (2k + 1)-component
spherical tensor of rank £ if and only if
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Under the infinitesimal rotations
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a spherical tensor behaves thus like
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Choosing nn = 2 and & + iy we get

[T, TSR] = ngTy®

and

[T, TSF) =

hkFakEq+ DT

Example Decomposition of the dyad product.
We form spherical tensors of rank 1 from the vector
operators U and V:

Uop =U., W=V,
U, +:U, V, £V,
Ui = $Ty7 Vi = Ty
Now
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In general we have
Theorem 1 Let X,gfl) and Z(Sf"’) be irreducible spherical
tensors of rank k1 and ko. Then

TR =" (kka; quaolkrko; kg) X () Z{F)

q1  q2

is a (irreducible) spherical tensor of rank k.
Proof: We show that Tq(k) transforms like

Z & (R)TY.
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Now
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where we have substituted the Clebsch-Gordan series
expansion
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Clebsch-Gordan coefficients
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which can be rewritten as
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Matrix elements of tensor operators
Theorem 2 The matriz elements of the tensor operator
T satisfi
q )
<a’,j’m’\Ték) |, jm) = 0,

unless m’ = q +m.

Proof: Due to the property

[J2. T{M] = haT "
we have
(o, §'m’|[]., TM] = ngT{® |, jm)
=[(m' —m)h —qh] x (', i'm \Tq(k)\a,jm> =0,

S0
(o, j'm/[T{" o, jm) =0,

iftm' £q+mn

Theorem 3 (Wigner-Eckardt’s theorem) The matriz

elements of a tensor operator between eigenstates of the
angular momentum satisfy the relation

(@5 T™|as)
V2i+1

where the reduced matrix element (o/5'(|T™*)||a;j) depends
neither on the quantum numbers m, m’' nor on q.

(o, 5'm! | TP |, jm) = (jk;maljk; 'm’)

Proof: Since Tq(k) is a tensor operator it satisfies the
condition

[Je, T

N=nV/kFa)kEq+ DT,
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(a',j'm/|[Ji7Tq(k)Ha,jm>
= 1/ (kF q)(k £ q + D){o, j'm’ [T} v, jm).

Substituting the matrix elements of the ladder operators
we get

VG Em) G Fm + D, jm' F 1TP|a, jm)
=V Fm) (G Em+ 1), 5, m[TF|a, j,m £ 1)
+VkF @)k g+ D, j,m'[TE) |a, jm).

If we now substituted 5 — 7, m' — m, j — j1, m — maq,
k — js and ¢ — mo, we would note that the recursion
formula above is exactly like the recursion formula for the
Clebsch-Gordan coefficients,

VG Fm)( £ m+ 1) (G1ja; maimaljija; jm £ 1)
= V(1 Fmu +1)(j1 £m)
X (J1j2;m1 F 1, ma|j1j2; jm)
+ /(G2 F ma + 1) (j2 £ mo)
X (j1j2; M1, ma F 1]j1j2; jm).

Both recursions are of the form 3, a;jz; = 0, or sets of
linear homogenous simultaneous equations with the same
coefficients a;;. So we have two sets of equations

Zaij:cj = O7 Zaijyj = O7
J J

one for the matrix elements (x;) of the tensor operator
and the other for the Clebsch-Gordan coefficients (y; ).
These sets of equations tell that

i Y%y and k fixed,

T Yk



so x; = cy; while ¢ is a proportionality coefficient
independent of the indeces j. Thus we see that
(a’,j’m'|Tq(k)|a7jm>
= ( constant independent on m, ¢ and m/’)
x (jkymaljk; j'm’).
If we write the proportionality coefficient like

(@'§' [ T™|aj)
V2j+1

we are through. =

According to the Wigner-Eckart theorem a matrix
element of a tensor operator is a product of two factors,
of which

e (jk;mql|jk;j'm’) depends only on the geometry, i.e.
on the orientation of the system with respect to the
z-axis.
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system.

depends on the dynamics of the

As a special case we have the projection theorem:
Theorem 4 Let

1 1
F—(J: £iJy) =F—

\/i( z y) \[2
be the components of the tensor operator corresponding to
the angular momentum. Then

Ji = Jy, Jo=J.

<O/7jm|'] i V‘O‘ajm>
h%j(i+1)

Proof: Due to the expansions

(o, jm/ [Vylev, jm) = (gm’|Tqlgm).
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we can write

(', jm|J - V]a, jm)
= <o/,jm\(J0Vo - J+1V_1 - J_1V+1)a,jm>
= mh(c/,
h

+ %\/(.] + m)(] —m+ 1)(0/,j,m - 1|V—1|a7jm>
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= ij<a JlVleg),
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.7 +m+ 1)<O/aj?m + 1|V+1|a,jm>

where, according to the Wigner-Eckart theorem the
coefficient ¢;,, does not depend on «, o’ or V.

The coefficient ¢, does not depend either on the
quantum number m, because J - V is a scalar operator,
so we can write it briefly as c¢;. Because ¢; does not
depend on the operator V' the above equation is valid
also when V' — J and o/ — a, or

(a, jm|?|a, jm) = B2j(j + 1) = c;(a]|T||ef).

If we now apply the Wigner-Eckart theorem to the
operators V; and J, we get

(o, jm/|Vy|av, jm)
(e, gm/|Tylax, jm)
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On the other hand,

for the ratios of the matrix elements.
the right hand side of this equation is

<O/ajm|'] : V|oz,]m>
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(o, jm’[Vgla, jm) = (gm/|Tgljm) =

Generalizing one can show that the reduced matrix
elements of the irreducible product Tq(k) of two tensor
operators, Xéfl) and Zéif?), satisfy
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