Symmetry

Symmetries, constants of motion and

degeneracies
Looking at the Lagrange equation of motion
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of classical mechanics one can see that if the Lagrangian
L(qi, ¢;) is invariant under translations, i.e.

L(qi,di) — L(q; + 6qi,4i) = L(qi, i),

the momentum
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is a conserved quantity, i.e.
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Formulating classical mechanics using the Hamiltonian
function H(q;, p;) the equations of motion take the forms
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Also looking at these one can see that if H is symmetric
under the operation

4 — ¢; + 04
there exists a conserved quantity:
p; = 0.

In quantum mechanics operations of that kind
(translations, rotations, ...) are associated with a unitary
symmetry operator.

Let S be an arbitrary symmetry operator. We say that
the Hamiltonian H is symmetric, if

[Sa H] =0,
or due to the unitarity of the operator S equivalently
S'HS = H.

The matrix elements of the Hamiltonian are then
invariant under that operation.
In the case of a continuum symmetry we can look at
infinitesimal operations
1€

S =1- ﬁG,
where the Hermitean operator G is the generator of that
symmetry. From the condition

StHS = H

it follows now

[G,H] =0,
so according to the Heisenberg equation of motion
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we have
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In the Heisenberg formalism the observable G is thus a
constant of motion. if H is invariant for example under

e translations then the momentum is constant of
motion.

e rotations then the angular momentum is a constant
motion.

Let us suppose now that the Hamiltonian is symmetric
under the operations S generated by G:

S'tHS = H
S,H] = 0
[G,H] = 0.

Let |g’) be the eigenstates of G, i.e.
Glg') =4d'lg")

and let the system at the moment tg be in the eigenstate
l¢') of G. Since the time evolution operator is a
functional of the Hamiltonian only,

U =UlH],

SO
(G, U] = 0.

At the moment ¢ we then have

Glg', tost) GU(to,t)lg") = Ul(to, 1)Glg")

g/|g/at0;t>7

or an eigenstate associated with a particular eigenvalue of
G remains always an eigenstate belonging to the same
eigenvalue.

Let us consider now the energy eigenstates |n), i.e.

Hn) = E,|n).

When the Hamiltonian is symmetric under the operations
S we have
H(S|n) = SH|n) = E,S|n).

If now
In) # Sln),

then the energy states F,, are degenerate. Thus a
symmetry is also usually associated with a degeneracy.
Let us suppose now that the symmetry operation S can
be parametrized with a continuous quantity, say A:

S=8S\).



When the Hamiltonian is symmetric under these
operations all states S(\)|n) have the same energy.
Example Rotations D(R).

If

then
[J,H] =0, [J* H]=0.

So there exist simultaneous eigenvectors |n; jm) of the
operators H, J? ja J.. Now all rotated states
D(R)|n; jm)

belong to the same energy eigenvalue. We know that

R)|n; jm) Z|n gm’) D(J) m(R),

that is, every rotated state is a superposition of (25 + 1)
linearly independent states. The degeneracy is thus

(25 + 1)-fold.

Example Atomic electron.

The potential acting on an electron is of form

U=V(r)+VisL-S.
Now
[J,H|=0, [J* H]=0,

where
J=L+S.

The energy levels are thus (2j + 1)-foldly degenerated.
Let’s set the atom in magnetic field parallel to the z-axis.
The Hamiltonian is then appended by the term

Z =cS,.

Now
[J?,8.] #0,

so the rotation symmetry is broken and the (25 + 1)-fold
degeneracy lifted.



