
Symmetry

Symmetries, constants of motion and
degeneracies
Looking at the Lagrange equation of motion
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of classical mechanics one can see that if the Lagrangian
L(qi, q̇i) is invariant under translations, i.e.

L(qi, q̇i) −→ L(qi + δqi, q̇i) = L(qi, q̇i),

the momentum
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is a conserved quantity, i.e.
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Formulating classical mechanics using the Hamiltonian
function H(qi, pi) the equations of motion take the forms

ṗi = −∂H
∂qi

q̇i =
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∂pi

.

Also looking at these one can see that if H is symmetric
under the operation

qi −→ qi + δqi

there exists a conserved quantity:

ṗi = 0.

In quantum mechanics operations of that kind
(translations, rotations, . . .) are associated with a unitary
symmetry operator.
Let S be an arbitrary symmetry operator. We say that
the Hamiltonian H is symmetric, if

[S,H] = 0,

or due to the unitarity of the operator S equivalently

S†HS = H.

The matrix elements of the Hamiltonian are then
invariant under that operation.
In the case of a continuum symmetry we can look at
infinitesimal operations

S = 1− iε

h̄
G,

where the Hermitean operator G is the generator of that
symmetry. From the condition

S†HS = H

it follows now
[G, H] = 0,

so according to the Heisenberg equation of motion
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we have
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In the Heisenberg formalism the observable G is thus a
constant of motion. if H is invariant for example under

• translations then the momentum is constant of
motion.

• rotations then the angular momentum is a constant
motion.

Let us suppose now that the Hamiltonian is symmetric
under the operations S generated by G:

S†HS = H

[S,H] = 0
[G, H] = 0.

Let |g′〉 be the eigenstates of G, i.e.

G|g′〉 = g′|g′〉

and let the system at the moment t0 be in the eigenstate
|g′〉 of G. Since the time evolution operator is a
functional of the Hamiltonian only,

U = U [H],

so
[G, U ] = 0.

At the moment t we then have

G|g′, t0; t〉 = GU(t0, t)|g′〉 = U(t0, t)G|g′〉
= g′|g′, t0; t〉,

or an eigenstate associated with a particular eigenvalue of
G remains always an eigenstate belonging to the same
eigenvalue.
Let us consider now the energy eigenstates |n〉, i.e.

H|n〉 = En|n〉.

When the Hamiltonian is symmetric under the operations
S we have

H(S|n〉 = SH|n〉 = EnS|n〉.

If now
|n〉 6= S|n〉,

then the energy states En are degenerate. Thus a
symmetry is also usually associated with a degeneracy.
Let us suppose now that the symmetry operation S can
be parametrized with a continuous quantity, say λ:

S = S(λ).



When the Hamiltonian is symmetric under these
operations all states S(λ)|n〉 have the same energy.
Example Rotations D(R).
If

[D(R),H] = 0,

then
[J ,H] = 0, [J2,H] = 0.

So there exist simultaneous eigenvectors |n; jm〉 of the
operators H, J2 ja Jz. Now all rotated states

D(R)|n; jm〉

belong to the same energy eigenvalue. We know that

D(R)|n; jm〉 =
∑
m′

|n; jm′〉D(j)
m′m(R),

that is, every rotated state is a superposition of (2j + 1)
linearly independent states. The degeneracy is thus
(2j + 1)-fold.
Example Atomic electron.
The potential acting on an electron is of form

U = V (r) + VLSL · S.

Now
[J ,H] = 0, [J2,H] = 0,

where
J = L + S.

The energy levels are thus (2j + 1)-foldly degenerated.
Let’s set the atom in magnetic field parallel to the z-axis.
The Hamiltonian is then appended by the term

Z = cSz.

Now
[J2, Sz] 6= 0,

so the rotation symmetry is broken and the (2j + 1)-fold
degeneracy lifted.


