
Lattice translations
We consider a particle in the one dimensional periodic
potential

V (x± a) = V (x).
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The Hamiltonian of the system is not in general invariant
under translations

τ †(l)xτ(l) = x + l, τ(l)|x′〉 = |x′ + l〉.

However, when l is exactly equal to the period of the
lattice a we have

τ †(a)V (x)τ(a) = V (x + a) = V (x).

Because the operator corresponding to the kinetic energy
in the Hamiltonian is translationally invariant the whole
Hamiltonian H satisfies the condition

τ †(a)Hτ(a) = H,

which, due to the unitarity of the translation operator
can be written as

[H, τ(a)] = 0.

The operators H and τ(a) have thus common eigenstates.
Note The operator τ(a) is unitary and hence its
eigenvalues need not be real.
Let us suppose that the potential barrier between the
lattice points is infinitely high. Let |n〉 be the state
localized in the lattice cell n, i.e.

〈x′|n〉 6= 0 only if x′ ≈ na.

Obviously |n〉 is a stationary state. Because all lattice
cells are exactly alike we must have

H|n〉 = E0|n〉, ∀n.

Thus the system has countably infinite number of ground
states |n〉, n = −∞, . . . ,∞.
Now

τ(a)|n〉 = |n + 1〉,

so the state |n〉 is not an eigenstate of the translation
τ(a).
Let’s try

|θ〉 ≡
∞∑
−∞

einθ|n〉,

where θ is a real parameter and

−π ≤ θ ≤ π.

Obviously we have

H|θ〉 = E0|θ〉.

Furthermore we get

τ(a)|θ〉 =
∞∑

n=−∞
einθ|n + 1〉 =

∞∑
n=−∞

ei(n−1)θ|n〉

= e−iθ|θ〉.

Thus every state corresponding to a value of the
continuous parameter θ has the same energy, i.e. the
ground state of the system infinitely degenerate.
Let us suppose further that

• |n〉 is a state localized at the point n so that

τ(a)|n〉 = |n + 1〉,

• 〈x′|n〉 6= 0 (but small), when |x′ − na| > a.

Due to the translation symmetry the diagonal elements of
the Hamiltonian H in the base {|n〉} are all equal to
eachother:

〈n|H|n〉 = E0.

Let us suppose now that

〈n′|H|n〉 6= 0 only if n′ = n or n′ = n± 1.

We are dealing with the so called tight binding
approximation.
When we define

∆ = −〈n± 1|H|n〉,

we can write

H|n〉 = E0|n〉 −∆|n + 1〉 −∆|n− 1〉,

where we have exploited the orthonormality of the basis
{|n〉}. Thus the state |n〉 is not an energy eigen state.
Let us look again at the trial

|θ〉 =
∞∑

n=−∞
einθ|n〉.

Like before we have

τ(a)|θ〉 = e−iθ|θ〉.

Furthermore

H
∑

einθ|n〉

= E0

∑
einθ|n〉 −∆

∑
einθ|n + 1〉

−∆
∑

einθ|n− 1〉

= E0

∑
einθ|n〉 −∆

∑
(einθ−iθ + einθ+iθ)|n〉

= (E0 − 2∆ cos θ)
∑

einθ|n〉.

The earlier degeneracy will be lifted if ∆ 6= 0 and

E0 − 2∆ ≤ E ≤ E0 + 2∆.



Bloch’s theorem

Let us consider the wave function 〈x′|θ〉. In the
translated state τ(a)|θ〉 the wave function is

〈x′|τ(a)|θ〉 = 〈x′ − a|θ〉

when the operator τ(a) acts on left. When it acts on
right we get

〈x′|τ(a)|θ〉 = e−iθ〈x′|θ〉,

so we have
〈x′ − a|θ〉 = 〈x′|θ〉e−iθ.

This equation can be solved by substituting

〈x′|θ〉 = eikx′
uk(x′),

when θ = ka and uk(x′) is a periodic function with the
period a.
We have derived a theorem known as the Bloch theorem:
Theorem 1 The wave function of the eigenstate |θ〉 of
the translation operator τ(a) can be written as the procuct
of the plane wave eikx′

and a function with the period a.
Note When deriving the theorem we exploited only the
fact that |θ〉 an eigenstate of the operator τ(a) belonging
to the eigenvalue eiθ. Thus it is valid for all periodic
systems (whether the tight binding approximation holds
or not)
With the help of the Bloch theorem the dispersion
relation of the energy in the tight binding model can be
written as

E(k) = E0 − 2∆ cos ka, −π

a
≤ k ≤ π

a
.

This continuum of the energies is known as the Brillouin
zone.


