
Time reversal (reversal of motion)
The Newton equations of motion are invariant under the
transformation t −→ −t: if x(t) is a solution of the
equation

mẍ = −∇V (x)

then also x(−t) is a solution.
At the moment t = 0 let there be a particle at the point
x(t = 0) with the momentum p(t = 0). Then a particle at
the same point but with the momentum −p(t = 0)
follows the trajectory x(−t).
In the quantum mechanical Schrödinger equation

ih̄
∂ψ

∂t
=

(
− h̄2

2m
∇2 + V

)
ψ,

due to the first derivative with respect to the time,
ψ(x,−t) is not a solution eventhough ψ(x, t) were, but
ψ∗(x,−t) is. In quantum mechanics the time reversal has
obviously something to do with the complex conjugation.
Let us consider the symmetry operation

|α〉 −→ |α̃〉, |β〉 −→ |β̃〉.

We require that the absolute value of the scalar product
is invariant under that operation:

|〈β̃|α̃〉| = |〈β|α〉|.

There are two possibilities to satisfy this condition:

1. 〈β̃|α̃〉 = 〈β|α〉, so the corresponding symmetry
operator is unitary, that is

〈β|α〉 −→ 〈β|U†U |α〉 = 〈β|α〉.

The symmetries treated earlier have obeyed this
condition.

2. 〈β̃|α̃〉 = 〈β|α〉∗ = 〈α|β〉, so the symmetry operator
cannot be unitary.

We define the antiunitary operator θ so that

〈β̃|α̃〉 = 〈α|β〉∗

θ(c1|α〉+ c2|β〉) = c∗1θ|α〉+ c∗2θ|β〉,

where

|α〉 −→ |α̃〉 = θ|α〉, |β〉 −→ |β̃〉 = θ|β〉

If the operator satisfies only the last condition it is called
antilinear.
We define the complex conjugation operator K so that

Kc|α〉 = c∗K|α〉.

We present the state |α〉 in the base {|a′〉}. The effect of
the operator K is then

|α〉 =
∑
a′

|a′〉〈a′|α〉 K−→ |α̃〉 =
∑
a′

〈a′|α〉∗K|a′〉

=
∑
a′

〈a′|α〉∗|a′〉.

The fact that the operator K does not change the base
states can be justified like:
The state |a′〉 represented in the base {|a′〉} maps to the
column vector

|a′〉 7→



0
0
...
0
1
0
...
0


,

which is unaffected by the complex conjugation.
Note The effect of the operator K depends thus on the
choice of the basis states.
If U is a unitary operator then the operator θ = UK is
antiunitary.
Proof: Firstly

θ(c1|α〉+ c2|β〉) = UK(c1|α〉+ c2|β〉)
= (c∗1UK|α〉+ c∗2UK|β〉)
= (c∗1θ|α〉+ c∗2θ|β〉),

so θ is antiliniear. Secondly, expanding the states |α〉 and
|β〉 in a complete basis {|a′〉} we get

|α〉 θ−→ |α̃〉 =
∑
a′

〈a′|α〉∗UK|a′〉

=
∑
a′

〈a′|α〉∗U |a′〉

=
∑
a′

〈α|a′〉U |a′〉

and

|β̃〉 =
∑
a′

〈a′|β〉∗U |a′〉 ↔ 〈β̃| =
∑
a′

〈a′|β〉〈a′|U†.

Thus the scalar product is

〈β̃|α̃〉 =
∑
a′′

∑
a′

〈a′′|β〉〈a′′|U†U |a′〉〈α|a′〉

=
∑
a′

〈α|a′〉〈a′|β〉 = 〈α|β〉

= 〈β|α〉∗.

The operator θ is thus indeed antiunitary.
Let Θ be the time reversal operator. We consider the
transformation

|α〉 −→ Θ|α〉,
where Θ|α〉 is the time reversed (motion reversed) state.
If |α〉 is the momentum eigenstate |p′〉, we should have

Θ|p′〉 = eiϕ| − p′〉.

Let the system be at the moment t = 0 in the state |α〉.
At a slightly later moment t = δt it is in the state

|α, t0 = 0; t = δt〉 =
(

1− iH

h̄
δt

)
|α〉.



We apply now, at the moment t = 0, the time reversal
operator Θ and let the system evolve under the
Hamiltonian H. Then at the moment δt the system is in
the state (

1− iH

h̄
δt

)
Θ|α〉.

If the motion of the system is invariant under time
reversal this state should be the same as

Θ|α, t0 = 0;−δt〉,

i.e. we first look at the state at the earlier moment −δt
and then reverse the direction of the momentum p.
Mathematically this condition can be expressed as(

1− iH

h̄
δt

)
Θ|α〉 = Θ

(
1− iH

h̄
(−δt)

)
|α〉.

Thus we must have

−iHΘ|〉 = ΘiH|〉,

where |〉 stands for an arbitrary state vector.
If Θ were linear we would obtain the anticommutator
relation

HΘ = −ΘH.

If now |n〉 is an energy eigenstate corresponding to the
eigenvalue En then, according to the anticommutation
rule

HΘ|n〉 = −ΘH|n〉 = (−En)Θ|n〉,

and the state Θ|n〉 is an energy eigenstate corresponding
to the eigenvalue −En. Thus most systems (those, whose
energy spectrum is not bounded) would not have any
ground state.
Thus the operator Θ must be antilinear, and, in order to
be a symmetry operator, it must be antiunitary. Using
the antilinearity for the right hand side of the condition

−iHΘ|〉 = ΘiH|〉

we can write it as

ΘiH|〉 = −iΘH|〉.

So, we see that the operators commute:

ΘH = HΘ.

Note We have not defined the Hermitean conjugate of
the antiunitary operator θ nor have we defined the
meaning of the expression 〈β|θ. That being, we let the
time reversal operator Θ to operate always on the right
and with the matrix element 〈β|Θ|α〉 we mean the
expression (〈β|) · (Θ|α〉).
Let ⊗ be an arbitrary linear operator. We define

|γ〉 ≡ ⊗†|β〉,

so that
〈β|⊗ = 〈γ|

and

〈β| ⊗ |α〉 = 〈γ|α〉 = 〈α̃|γ̃〉
= 〈α̃|Θ⊗† |β〉 = 〈α̃|Θ⊗† Θ−1Θ|β〉
= 〈α̃|Θ⊗† Θ−1|β̃〉.

In partcular, for a Hermitean observable A we have

〈β|A|α〉 = 〈α̃|ΘAΘ−1|β̃〉.

We say that the observable A is even or odd under time
reversal depending on wheter in the equation

ΘAΘ−1 = ±A

the upper or the lower sign holds. This together with the
equation

〈β|A|α〉 = 〈α̃|ΘAΘ−1|β̃〉

imposes certain conditions on the phases of the matrix
elements of the operator A between the time reversed
states. Namely, they has to satisfy

〈β|A|α〉 = ±〈β̃|A|α̃〉∗.

In particular, the expectation value satisfies the condition

〈α|A|α〉 = ±〈α̃|A|α̃〉.

Example The expectation value of the momentum
operator p.
We require that

〈α|p|α〉 = −〈α̃|p|α̃〉,

so p is odd, or
ΘpΘ−1 = −p.

The momentum eigenstates satisfy

pΘ|p′〉 = −ΘpΘ−1Θ|p′〉
= (−p′)Θ|p′〉,

i.e. Θ|p′〉 is the momentum eigenstates correponding to
the eigenvalue −p′:

Θ|p′〉 = eiϕ| − p′〉.

Similarly we can derive for the position operator x the
expressions

ΘxΘ−1 = x

Θ|x′〉 = |x′〉

when we impose the physically sensible condition

〈α|x|α〉 = 〈α̃|x|α̃〉.

We consider the basic commutation relations

[xi, pj ]|〉 = ih̄δij |〉.

Now
Θ[xi, pj ]Θ−1Θ|〉 = Θih̄δij |〉,



from which, using the antilinearity and the time reversal
properties of the operators x and p we get

[xi, (−pj)]Θ|〉 = −ih̄δijΘ|〉.

We see thus that the commutation rule

[xi, pj ]|〉 = ih̄δij |〉

remains invariant under the time reversal.
Correspondingly, the requirement of the invariance of the
commutation rule

[Ji, Jj ] = ih̄εijkJk

leads to the condition

ΘJΘ−1 = −J .

This agrees with transformation properties of the orbital
angular momentum x× p.

Wave functions

We expand the state |α〉 with the help of position
eigenstates:

|α〉 =
∫
d3x′ |x′〉〈x′|α〉.

Now

Θ|α〉 =
∫
d3x′ Θ|x′〉〈x′|α〉∗

=
∫
d3x′ |x′〉〈x′|α〉∗,

so under the time reversal the wave function

ψ(x′) = 〈x′|α〉

transforms like
ψ(x′) −→ ψ∗(x′).

If in particular we have

ψ(x′) = R(r)Y m
l (θ, φ),

we see that

Y m
l (θ, φ) −→ Y m

l
∗(θ, φ) = (−1)mY −m

l (θ, φ).

Because Y m
l is the wave function belonging to the state

|lm〉 we must have

Θ|lm〉 = (−1)m|l,−m〉.

The probability current corresponding to the wave
function R(r)Y m

l seems to turn clockwise when looked at
from the direction of the positive z-axis and m > 0. The
probability current of the corresponding time reversed
state on the other hand turns counterclockwise because m
changes its sign under the operation.
The spinles particles obey
Theorem 1 If the Hamiltonian H is invariant under the
time reversal and the energy eigenstate |n〉 nondegenerate
then the corresponding energy eigenfunction is real (or
more generally a real function times a phase factor
independent on the coordinate x′).

HΘ|n〉 = ΘH|n〉 = EnΘ|n〉,

so the states |n〉 and Θ|n〉 have the same energy. Because
the state |n〉 was supposed to be nondegenerate they
must represent the same state. The wave function of the
state |n〉 is 〈x′|n〉 and the one of the state Θ|n〉
correspondingly 〈x′|n〉∗. These must be same (or more
accurately, they can differ only by a phase factor which
does not depend on the coordinate x′), i.e.

〈x′|n〉 = 〈x′|n〉∗

For example the wave function of a nondegenerate
groundstate is always real.
For a spinles particle in the state |α〉 we get

Θ|α〉 = Θ
∫
dx′ 〈x′|α〉|x′〉

=
∫
dx′ 〈x′|α〉∗|x′〉 = K|α〉,

i.e. the time reversal is equivalent to the complex
conjugation.
On the other hand, in the momentum space we have

Θ|α〉 =
∫
d3p′ | − p′〉〈p′|α〉∗

=
∫
d3p′ |p′〉〈−p′|α〉∗,

because
Θ|p′〉 = | − p′〉.

The momentum space wave function transform thus
under time reversal like

φ(p′) −→ φ∗(−p′).

We consider a spin 1
2 particle the spin of which is oriented

along n̂. The corresponding state is obtained by rotating
the state |Sz; ↑〉:

|n; ↑〉 = e−iSzα/h̄e−iSyβ/h̄|Sz; ↑〉,

where α and β are the direction angles of the vector n̂.
Because

ΘJΘ−1 = −J .

we see that

Θ|n; ↑〉 = e−iSzα/h̄e−iSyβ/h̄Θ|Sz; ↑〉.

Furthermore, due to the oddity of the angular
momentum, it follows that

JzΘ|Sz; ↑〉 = − h̄
2
Θ|Sz; ↑〉,

so we must have

Θ|Sz; ↑〉 = η|Sz; ↓〉,

where η is an arbitrary phase factor. So we get

Θ|n; ↑〉 = η|n; ↓〉.



On the other hand we have

|n; ↓〉 = e−iαSz/h̄e−i(π+β)Sy/h̄|Sz; ↑〉,

so

η|n; ↓〉 = Θ|n; ↑〉 = e−iSzα/h̄e−iSyβ/h̄Θ|Sz; ↑〉
= ηe−iαSz/h̄e−i(π+β)Sy/h̄|Sz; ↑〉.

Writing
Θ = UK, U unitary

and recalling that the complex conjugation K has no
effect on the base states we see that

Θ = ηe−iπSy/h̄K = −iη
(

2Sy

h̄

)
K.

Now

e−iπSy/h̄|Sz; ↑〉 = +|Sz; ↓〉
e−iπSy/h̄|Sz; ↓〉 = −|Sz; ↑〉,

so the effect of the time reversal on a general spin 1
2 state

is

Θ(c↑|Sz; ↑〉+ c↓|Sz; ↓〉) = +ηc∗↑|Sz; ↓〉 − ηc∗↓|Sz; ↑〉.

Applying the operator Θ once again we get

Θ2(c↑|Sz; ↑〉+ c↓|Sz; ↓〉)
= −|η|2c↑|Sz; ↑〉 − |η|2c↓|Sz; ↓〉
= −(c↑|Sz; ↑〉+ c↓|Sz; ↓〉),

i.e. for an arbitrary spin orientation we have

Θ2 = −1.

From the relation

Θ|lm〉 = (−1)m|l,−m〉

we see that for spinles particles we have

Θ2 = 1.

In general, one can show that

Θ2|j half integer〉 = −|j half integer〉
Θ2|j integer〉 = +|j integer〉.

Generally we can write

Θ = ηe−iπJy/h̄K.

Now
e−2iπJy/h̄|jm〉 = (−1)2j |jm〉,

so

Θ2|jm〉 = Θ
(
ηe−iπJy/h̄|jm〉

)
= |η|2e−2iπJy/h̄|jm〉
= (−1)2j |jm〉.

Thus we must have

Θ2 = (−1)2j .

Often one chooses

Θ|jm〉 = i2m|j,−m〉.

Spherical tensors

Let us suppose that the operator A is either even or odd,
i.e.

ΘAΘ(−1) = ±A.

We saw that then we have

〈α|A|α〉 = ±〈α̃|A|α̃〉.

In an eigenstate of the angular momentum we have thus

〈α, jm|A|α, jm〉 = ±〈α, j,−m|A|α, j,−m〉.

Let now A be a component of a Hermitian spherical
tensor:

A = T (k)
q .

According to the Wigner-Eckart theorem it is sufficient to
consider only the component q = 0.
We define T (k) to be even/odd under the time reversal if

ΘT (k)
q=0Θ

−1 = ±T (k)
q=0.

Then we have

〈α, jm|T (k)
0 |α, jm〉 = ±〈α, j,−m|T (k)

0 |α, j,−m〉.

The state |α, j,−m〉 is obtained by rotating the state
|α, jm〉:

D(0, π, 0)|α, jm〉 = eiϕ|α, j,−m〉.

On the other hand, due to the definition of the spherical
tensor

D†(R)T (k)
q D(R) =

k∑
q′=−k

D(k)∗

qq′ (R)T (k)
q′ ,

we get

D†(0, π, 0)T (k)
0 D(0, π, 0) =

∑
q

D(k)
0q (0, π, 0)T (k)

q .

Now
D(k)

00 (0, π, 0) = Pk(cosπ) = (−1)k,

so we have

D†(0, π, 0)T (k)
0 D(0, π, 0)

= (−1)kT
(k)
0 + (q 6= 0 components).

Furthermore
〈α, jm|T (k)

q 6=0|α, jm〉 = 0,



since the m selection rule would require m = m+ q. So
we get

〈α, jm|T (k)
0 |α, jm〉

= ±〈α, jm|D†(0, π, 0)T (k)
0 D(0, π, 0)|α, jm〉

= ±(−1)k〈α, jm|T (k)
0 |α, jm〉.

Note Unlike under other symmetries the invariance of
the Hamiltonian under the time reversal

[Θ,H] = 0,

does not lead to any conservation laws. This is due to the
fact that the time evolution operator is not invariant:

ΘU(t, t0) 6= U(t, t0)Θ.

Time reversal and degeneracy

Let us suppose that

[Θ,H] = 0.

Then the energy eigenstates obey

H|n〉 = En|n〉
HΘ|n〉 = EnΘ|n〉.

If we now had
Θ|n〉 = eiδ|n〉,

then, reapplying the time reversal we would obtain

Θ2|n〉 = e−iδΘ|n〉 = |n〉,

or
Θ2 = 1.

This is, however, impossible if the system j is half integer,
because then Θ2 = −1. In systems of this kind |n〉 and
Θ|n〉 are degenerate.
Example Electon in electromagnetic field
If a particle is influenced by an external static electric
field

V (x) = eφ(x),

then clearly the Hamiltonian

H =
p2

2m
+ V (x)

is invariant under the time reversal:

[Θ,H] = 0.

If now there are odd number of electrons in the system
the total j is half integer. Thus, in a system of this kind
there is at least twofold degeneracy, so called Kramers’
degeneracy.
In the magnetic field

B = ∇×A

the Hamiltonian of an electron contains such terms as

S ·B, p ·A + A · p.

The magnetic field B is external, independent on the
system, so

[Θ,B] = 0 ja [Θ,A] = 0.

On the other hand, S and p are odd, or

ΘSΘ−1 = −S ja ΘpΘ−1 = −p,

so
[Θ,H] 6= 0.

We say that magnetic field breaks the time reversal
symmetry and lifts the Kramers degeneracy.


