Time reversal (reversal of motion)

The Newton equations of motion are invariant under the transformation $t \longrightarrow-t$: if $\boldsymbol{x}(t)$ is a solution of the equation

$$
m \ddot{\boldsymbol{x}}=-\nabla V(\boldsymbol{x})
$$

then also $\boldsymbol{x}(-t)$ is a solution.
At the moment $t=0$ let there be a particle at the point $\boldsymbol{x}(t=0)$ with the momentum $\boldsymbol{p}(t=0)$. Then a particle at the same point but with the momentum $-\boldsymbol{p}(t=0)$
follows the trajectory $\boldsymbol{x}(-t)$.
In the quantum mechanical Schrödinger equation

$$
i \hbar \frac{\partial \psi}{\partial t}=\left(-\frac{\hbar^{2}}{2 m} \nabla^{2}+V\right) \psi
$$

due to the first derivative with respect to the time, $\psi(\boldsymbol{x},-t)$ is not a solution eventhough $\psi(\boldsymbol{x}, t)$ were, but $\psi^{*}(\boldsymbol{x},-t)$ is. In quantum mechanics the time reversal has obviously something to do with the complex conjugation. Let us consider the symmetry operation

$$
|\alpha\rangle \longrightarrow|\tilde{\alpha}\rangle, \quad|\beta\rangle \longrightarrow|\tilde{\beta}\rangle .
$$

We require that the absolute value of the scalar product is invariant under that operation:

$$
|\langle\tilde{\beta} \mid \tilde{\alpha}\rangle|=|\langle\beta \mid \alpha\rangle| .
$$

There are two possibilities to satisfy this condition:

1. $\langle\tilde{\beta} \mid \tilde{\alpha}\rangle=\langle\beta \mid \alpha\rangle$, so the corresponding symmetry operator is unitary, that is

$$
\langle\beta \mid \alpha\rangle \longrightarrow\langle\beta| U^{\dagger} U|\alpha\rangle=\langle\beta \mid \alpha\rangle .
$$

The symmetries treated earlier have obeyed this condition.
2. $\langle\tilde{\beta} \mid \tilde{\alpha}\rangle=\langle\beta \mid \alpha\rangle^{*}=\langle\alpha \mid \beta\rangle$, so the symmetry operator cannot be unitary.

We define the antiunitary operator θ so that

$$
\begin{aligned}
\langle\tilde{\beta} \mid \tilde{\alpha}\rangle & =\langle\alpha \mid \beta\rangle^{*} \\
\theta\left(c_{1}|\alpha\rangle+c_{2}|\beta\rangle\right) & =c_{1}^{*} \theta|\alpha\rangle+c_{2}^{*} \theta|\beta\rangle,
\end{aligned}
$$

where

$$
|\alpha\rangle \longrightarrow|\tilde{\alpha}\rangle=\theta|\alpha\rangle, \quad|\beta\rangle \longrightarrow|\tilde{\beta}\rangle=\theta|\beta\rangle
$$

If the operator satisfies only the last condition it is called antilinear.
We define the complex conjugation operator K so that

$$
K c|\alpha\rangle=c^{*} K|\alpha\rangle .
$$

We present the state $|\alpha\rangle$ in the base $\left\{\left|a^{\prime}\right\rangle\right\}$. The effect of the operator K is then

$$
\begin{aligned}
|\alpha\rangle & =\sum_{a^{\prime}}\left|a^{\prime}\right\rangle\left\langle a^{\prime} \mid \alpha\right\rangle \xrightarrow{K}|\tilde{\alpha}\rangle=\sum_{a^{\prime}}\left\langle a^{\prime} \mid \alpha\right\rangle^{*} K\left|a^{\prime}\right\rangle \\
& =\sum_{a^{\prime}}\left\langle a^{\prime} \mid \alpha\right\rangle^{*}\left|a^{\prime}\right\rangle .
\end{aligned}
$$

The fact that the operator K does not change the base states can be justified like:
The state $\left|a^{\prime}\right\rangle$ represented in the base $\left\{\left|a^{\prime}\right\rangle\right\}$ maps to the column vector

$$
\left|a^{\prime}\right\rangle \mapsto\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right),
$$

which is unaffected by the complex conjugation.
Note The effect of the operator K depends thus on the choice of the basis states.
If U is a unitary operator then the operator $\theta=U K$ is antiunitary.
Proof: Firstly

$$
\begin{aligned}
\theta\left(c_{1}|\alpha\rangle+c_{2}|\beta\rangle\right) & =U K\left(c_{1}|\alpha\rangle+c_{2}|\beta\rangle\right) \\
& =\left(c_{1}^{*} U K|\alpha\rangle+c_{2}^{*} U K|\beta\rangle\right) \\
& =\left(c_{1}^{*} \theta|\alpha\rangle+c_{2}^{*} \theta|\beta\rangle\right)
\end{aligned}
$$

so θ is antiliniear. Secondly, expanding the states $|\alpha\rangle$ and $|\beta\rangle$ in a complete basis $\left\{\left|a^{\prime}\right\rangle\right\}$ we get

$$
\begin{aligned}
|\alpha\rangle & \xrightarrow{\theta}|\tilde{\alpha}\rangle=\sum_{a^{\prime}}\left\langle a^{\prime} \mid \alpha\right\rangle^{*} U K\left|a^{\prime}\right\rangle \\
& =\sum_{a^{\prime}}\left\langle a^{\prime} \mid \alpha\right\rangle^{*} U\left|a^{\prime}\right\rangle \\
& =\sum_{a^{\prime}}\left\langle\alpha \mid a^{\prime}\right\rangle U\left|a^{\prime}\right\rangle
\end{aligned}
$$

and

$$
|\tilde{\beta}\rangle=\sum_{a^{\prime}}\left\langle a^{\prime} \mid \beta\right\rangle^{*} U\left|a^{\prime}\right\rangle \leftrightarrow\langle\tilde{\beta}|=\sum_{a^{\prime}}\left\langle a^{\prime} \mid \beta\right\rangle\left\langle a^{\prime}\right| U^{\dagger} .
$$

Thus the scalar product is

$$
\begin{aligned}
\langle\tilde{\beta} \mid \tilde{\alpha}\rangle & =\sum_{a^{\prime \prime}} \sum_{a^{\prime}}\left\langle a^{\prime \prime} \mid \beta\right\rangle\left\langle a^{\prime \prime}\right| U^{\dagger} U\left|a^{\prime}\right\rangle\left\langle\alpha \mid a^{\prime}\right\rangle \\
& =\sum_{a^{\prime}}\left\langle\alpha \mid a^{\prime}\right\rangle\left\langle a^{\prime} \mid \beta\right\rangle=\langle\alpha \mid \beta\rangle \\
& =\langle\beta \mid \alpha\rangle^{*} .
\end{aligned}
$$

The operator θ is thus indeed antiunitary.
Let Θ be the time reversal operator. We consider the transformation

$$
|\alpha\rangle \longrightarrow \Theta|\alpha\rangle,
$$

where $\Theta|\alpha\rangle$ is the time reversed (motion reversed) state. If $|\alpha\rangle$ is the momentum eigenstate $\left|\boldsymbol{p}^{\prime}\right\rangle$, we should have

$$
\Theta\left|\boldsymbol{p}^{\prime}\right\rangle=e^{i \varphi}\left|-\boldsymbol{p}^{\prime}\right\rangle
$$

Let the system be at the moment $t=0$ in the state $|\alpha\rangle$. At a slightly later moment $t=\delta t$ it is in the state

$$
\left|\alpha, t_{0}=0 ; t=\delta t\right\rangle=\left(1-\frac{i H}{\hbar} \delta t\right)|\alpha\rangle .
$$

We apply now, at the moment $t=0$, the time reversal operator Θ and let the system evolve under the Hamiltonian H. Then at the moment δt the system is in the state

$$
\left(1-\frac{i H}{\hbar} \delta t\right) \Theta|\alpha\rangle
$$

If the motion of the system is invariant under time reversal this state should be the same as

$$
\Theta\left|\alpha, t_{0}=0 ;-\delta t\right\rangle,
$$

i.e. we first look at the state at the earlier moment $-\delta t$ and then reverse the direction of the momentum \boldsymbol{p}. Mathematically this condition can be expressed as

$$
\left(1-\frac{i H}{\hbar} \delta t\right) \Theta|\alpha\rangle=\Theta\left(1-\frac{i H}{\hbar}(-\delta t)\right)|\alpha\rangle .
$$

Thus we must have

$$
-i H \Theta| \rangle=\Theta i H| \rangle
$$

where \rangle stands for an arbitrary state vector. If Θ were linear we would obtain the anticommutator relation

$$
H \Theta=-\Theta H
$$

If now $|n\rangle$ is an energy eigenstate corresponding to the eigenvalue E_{n} then, according to the anticommutation rule

$$
H \Theta|n\rangle=-\Theta H|n\rangle=\left(-E_{n}\right) \Theta|n\rangle
$$

and the state $\Theta|n\rangle$ is an energy eigenstate corresponding to the eigenvalue $-E_{n}$. Thus most systems (those, whose energy spectrum is not bounded) would not have any ground state.
Thus the operator Θ must be antilinear, and, in order to be a symmetry operator, it must be antiunitary. Using the antilinearity for the right hand side of the condition

$$
-i H \Theta| \rangle=\Theta i H| \rangle
$$

we can write it as

$$
\Theta i H\rangle=-i \Theta H|\rangle
$$

So, we see that the operators commute:

$$
\Theta H=H \Theta .
$$

Note We have not defined the Hermitean conjugate of the antiunitary operator θ nor have we defined the meaning of the expression $\langle\beta| \theta$. That being, we let the time reversal operator Θ to operate always on the right and with the matrix element $\langle\beta| \Theta|\alpha\rangle$ we mean the expression $(\langle\beta|) \cdot(\Theta|\alpha\rangle)$.
Let \otimes be an arbitrary linear operator. We define

$$
|\gamma\rangle \equiv \otimes^{\dagger}|\beta\rangle
$$

so that

$$
\langle\beta| \otimes=\langle\gamma|
$$

and

$$
\begin{aligned}
\langle\beta| \otimes|\alpha\rangle & =\langle\gamma \mid \alpha\rangle=\langle\tilde{\alpha} \mid \tilde{\gamma}\rangle \\
& =\langle\tilde{\alpha}| \Theta \otimes^{\dagger}|\beta\rangle=\langle\tilde{\alpha}| \Theta \otimes^{\dagger} \Theta^{-1} \Theta|\beta\rangle \\
& =\langle\tilde{\alpha}| \Theta \otimes^{\dagger} \Theta^{-1}|\tilde{\beta}\rangle .
\end{aligned}
$$

In partcular, for a Hermitean observable A we have

$$
\langle\beta| A|\alpha\rangle=\langle\tilde{\alpha}| \Theta A \Theta^{-1}|\tilde{\beta}\rangle .
$$

We say that the observable A is even or odd under time reversal depending on wheter in the equation

$$
\Theta A \Theta^{-1}= \pm A
$$

the upper or the lower sign holds. This together with the equation

$$
\langle\beta| A|\alpha\rangle=\langle\tilde{\alpha}| \Theta A \Theta^{-1}|\tilde{\beta}\rangle
$$

imposes certain conditions on the phases of the matrix elements of the operator A between the time reversed states. Namely, they has to satisfy

$$
\langle\beta| A|\alpha\rangle= \pm\langle\tilde{\beta}| A|\tilde{\alpha}\rangle^{*}
$$

In particular, the expectation value satisfies the condition

$$
\langle\alpha| A|\alpha\rangle= \pm\langle\tilde{\alpha}| A|\tilde{\alpha}\rangle
$$

Example The expectation value of the momentum operator \boldsymbol{p}.
We require that

$$
\langle\alpha| \boldsymbol{p}|\alpha\rangle=-\langle\tilde{\alpha}| \boldsymbol{p}|\tilde{\alpha}\rangle,
$$

so \boldsymbol{p} is odd, or

$$
\Theta p \Theta^{-1}=-\boldsymbol{p}
$$

The momentum eigenstates satisfy

$$
\begin{aligned}
\boldsymbol{p} \Theta\left|\boldsymbol{p}^{\prime}\right\rangle & =-\Theta \boldsymbol{p} \Theta^{-1} \Theta\left|\boldsymbol{p}^{\prime}\right\rangle \\
& =\left(-\boldsymbol{p}^{\prime}\right) \Theta\left|\boldsymbol{p}^{\prime}\right\rangle
\end{aligned}
$$

i.e. $\Theta\left|\boldsymbol{p}^{\prime}\right\rangle$ is the momentum eigenstates correponding to the eigenvalue $-\boldsymbol{p}^{\prime}$:

$$
\Theta\left|\boldsymbol{p}^{\prime}\right\rangle=e^{i \varphi}\left|-\boldsymbol{p}^{\prime}\right\rangle
$$

Similarly we can derive for the position operator \boldsymbol{x} the expressions

$$
\begin{aligned}
\Theta \boldsymbol{x} \Theta^{-1} & =\boldsymbol{x} \\
\Theta\left|\boldsymbol{x}^{\prime}\right\rangle & =\left|\boldsymbol{x}^{\prime}\right\rangle
\end{aligned}
$$

when we impose the physically sensible condition

$$
\langle\alpha| \boldsymbol{x}|\alpha\rangle=\langle\tilde{\alpha}| \boldsymbol{x}|\tilde{\alpha}\rangle .
$$

We consider the basic commutation relations

$$
\left.\left[x_{i}, p_{j}\right]\left\rangle=i \hbar \delta_{i j}\right|\right\rangle
$$

Now

$$
\Theta\left[x_{i}, p_{j}\right] \Theta^{-1} \Theta| \rangle=\Theta i \hbar \delta_{i j}| \rangle
$$

from which, using the antilinearity and the time reversal properties of the operators \boldsymbol{x} and \boldsymbol{p} we get

$$
\left.\left[x_{i},\left(-p_{j}\right)\right] \Theta\left\rangle=-i \hbar \delta_{i j} \Theta\right|\right\rangle
$$

We see thus that the commutation rule

$$
\left.\left[x_{i}, p_{j}\right]\left\rangle=i \hbar \delta_{i j}\right|\right\rangle
$$

remains invariant under the time reversal.
Correspondingly, the requirement of the invariance of the commutation rule

$$
\left[J_{i}, J_{j}\right]=i \hbar \epsilon_{i j k} J_{k}
$$

leads to the condition

$$
\Theta \boldsymbol{J} \Theta^{-1}=-\boldsymbol{J}
$$

This agrees with transformation properties of the orbital angular momentum $\boldsymbol{x} \times \boldsymbol{p}$.

Wave functions

We expand the state $|\alpha\rangle$ with the help of position eigenstates:

$$
|\alpha\rangle=\int d^{3} x^{\prime}\left|\boldsymbol{x}^{\prime}\right\rangle\left\langle\boldsymbol{x}^{\prime} \mid \alpha\right\rangle
$$

Now

$$
\begin{aligned}
\Theta|\alpha\rangle & =\int d^{3} x^{\prime} \Theta\left|\boldsymbol{x}^{\prime}\right\rangle\left\langle\boldsymbol{x}^{\prime} \mid \alpha\right\rangle^{*} \\
& =\int d^{3} x^{\prime}\left|\boldsymbol{x}^{\prime}\right\rangle\left\langle\boldsymbol{x}^{\prime} \mid \alpha\right\rangle^{*}
\end{aligned}
$$

so under the time reversal the wave function

$$
\psi\left(\boldsymbol{x}^{\prime}\right)=\left\langle\boldsymbol{x}^{\prime} \mid \alpha\right\rangle
$$

transforms like

$$
\psi\left(\boldsymbol{x}^{\prime}\right) \longrightarrow \psi^{*}\left(\boldsymbol{x}^{\prime}\right)
$$

If in particular we have

$$
\psi\left(\boldsymbol{x}^{\prime}\right)=R(r) Y_{l}^{m}(\theta, \phi),
$$

we see that

$$
Y_{l}^{m}(\theta, \phi) \longrightarrow Y_{l}^{m *}(\theta, \phi)=(-1)^{m} Y_{l}^{-m}(\theta, \phi) .
$$

Because Y_{l}^{m} is the wave function belonging to the state $|l m\rangle$ we must have

$$
\Theta|l m\rangle=(-1)^{m}|l,-m\rangle .
$$

The probability current corresponding to the wave function $R(r) Y_{l}^{m}$ seems to turn clockwise when looked at from the direction of the positive z-axis and $m>0$. The probability current of the corresponding time reversed state on the other hand turns counterclockwise because m changes its sign under the operation.
The spinles particles obey
Theorem 1 If the Hamiltonian H is invariant under the time reversal and the energy eigenstate $|n\rangle$ nondegenerate then the corresponding energy eigenfunction is real (or more generally a real function times a phase factor independent on the coordinate \boldsymbol{x}^{\prime}).

$$
H \Theta|n\rangle=\Theta H|n\rangle=E_{n} \Theta|n\rangle
$$

so the states $|n\rangle$ and $\Theta|n\rangle$ have the same energy. Because the state $|n\rangle$ was supposed to be nondegenerate they must represent the same state. The wave function of the state $|n\rangle$ is $\left\langle\boldsymbol{x}^{\prime} \mid n\right\rangle$ and the one of the state $\Theta|n\rangle$ correspondingly $\left\langle\boldsymbol{x}^{\prime} \mid n\right\rangle^{*}$. These must be same (or more accurately, they can differ only by a phase factor which does not depend on the coordinate \boldsymbol{x}^{\prime}), i.e.

$$
\left\langle\boldsymbol{x}^{\prime} \mid n\right\rangle=\left\langle\boldsymbol{x}^{\prime} \mid n\right\rangle^{*}
$$

For example the wave function of a nondegenerate groundstate is always real.
For a spinles particle in the state $|\alpha\rangle$ we get

$$
\begin{aligned}
\Theta|\alpha\rangle & =\Theta \int d \boldsymbol{x}^{\prime}\left\langle\boldsymbol{x}^{\prime} \mid \alpha\right\rangle\left|\boldsymbol{x}^{\prime}\right\rangle \\
& =\int d \boldsymbol{x}^{\prime}\left\langle\boldsymbol{x}^{\prime} \mid \alpha\right\rangle^{*}\left|\boldsymbol{x}^{\prime}\right\rangle=K|\alpha\rangle
\end{aligned}
$$

i.e. the time reversal is equivalent to the complex conjugation.
On the other hand, in the momentum space we have

$$
\begin{aligned}
\Theta|\alpha\rangle & =\int d^{3} p^{\prime}\left|-\boldsymbol{p}^{\prime}\right\rangle\left\langle\boldsymbol{p}^{\prime} \mid \alpha\right\rangle^{*} \\
& =\int d^{3} p^{\prime}\left|\boldsymbol{p}^{\prime}\right\rangle\left\langle-\boldsymbol{p}^{\prime} \mid \alpha\right\rangle^{*}
\end{aligned}
$$

because

$$
\Theta\left|\boldsymbol{p}^{\prime}\right\rangle=\left|-\boldsymbol{p}^{\prime}\right\rangle
$$

The momentum space wave function transform thus under time reversal like

$$
\phi\left(\boldsymbol{p}^{\prime}\right) \longrightarrow \phi^{*}\left(-\boldsymbol{p}^{\prime}\right)
$$

We consider a spin $\frac{1}{2}$ particle the spin of which is oriented along $\hat{\boldsymbol{n}}$. The corresponding state is obtained by rotating the state $\left|S_{z} ; \uparrow\right\rangle$:

$$
|\boldsymbol{n} ; \uparrow\rangle=e^{-i S_{z} \alpha / \hbar} e^{-i S_{y} \beta / \hbar}\left|S_{z} ; \uparrow\right\rangle
$$

where α and β are the direction angles of the vector $\hat{\boldsymbol{n}}$. Because

$$
\Theta \boldsymbol{J} \Theta^{-1}=-\boldsymbol{J}
$$

we see that

$$
\Theta|\boldsymbol{n} ; \uparrow\rangle=e^{-i S_{z} \alpha / \hbar} e^{-i S_{y} \beta / \hbar} \Theta\left|S_{z} ; \uparrow\right\rangle
$$

Furthermore, due to the oddity of the angular momentum, it follows that

$$
J_{z} \Theta\left|S_{z} ; \uparrow\right\rangle=-\frac{\hbar}{2} \Theta\left|S_{z} ; \uparrow\right\rangle
$$

so we must have

$$
\Theta\left|S_{z} ; \uparrow\right\rangle=\eta\left|S_{z} ; \downarrow\right\rangle
$$

where η is an arbitrary phase factor. So we get

$$
\Theta|\boldsymbol{n} ; \uparrow\rangle=\eta|\boldsymbol{n} ; \downarrow\rangle .
$$

On the other hand we have

$$
|\boldsymbol{n} ; \downarrow\rangle=e^{-i \alpha S_{z} / \hbar} e^{-i(\pi+\beta) S_{y} / \hbar}\left|S_{z} ; \uparrow\right\rangle
$$

so

$$
\begin{aligned}
\eta|\boldsymbol{n} ; \downarrow\rangle & =\Theta|\boldsymbol{n} ; \uparrow\rangle=e^{-i S_{z} \alpha / \hbar} e^{-i S_{y} \beta / \hbar} \Theta\left|S_{z} ; \uparrow\right\rangle \\
& =\eta e^{-i \alpha S_{z} / \hbar} e^{-i(\pi+\beta) S_{y} / \hbar}\left|S_{z} ; \uparrow\right\rangle
\end{aligned}
$$

Writing

$$
\Theta=U K, U \text { unitary }
$$

and recalling that the complex conjugation K has no effect on the base states we see that

$$
\Theta=\eta e^{-i \pi S_{y} / \hbar} K=-i \eta\left(\frac{2 S_{y}}{\hbar}\right) K
$$

Now

$$
\begin{aligned}
& e^{-i \pi S_{y} / \hbar}\left|S_{z} ; \uparrow\right\rangle=+\left|S_{z} ; \downarrow\right\rangle \\
& e^{-i \pi S_{y} / \hbar}\left|S_{z} ; \downarrow\right\rangle=-\left|S_{z} ; \uparrow\right\rangle,
\end{aligned}
$$

so the effect of the time reversal on a general spin $\frac{1}{2}$ state is

$$
\Theta\left(c_{\uparrow}\left|S_{z} ; \uparrow\right\rangle+c_{\downarrow}\left|S_{z} ; \downarrow\right\rangle\right)=+\eta c_{\uparrow}^{*}\left|S_{z} ; \downarrow\right\rangle-\eta c_{\downarrow}^{*}\left|S_{z} ; \uparrow\right\rangle .
$$

Applying the operator Θ once again we get

$$
\begin{aligned}
& \Theta^{2}\left(c_{\uparrow}\left|S_{z} ; \uparrow\right\rangle+c_{\downarrow}\left|S_{z} ; \downarrow\right\rangle\right) \\
& \quad=-|\eta|^{2} c_{\uparrow}\left|S_{z} ; \uparrow\right\rangle-|\eta|^{2} c_{\downarrow}\left|S_{z} ; \downarrow\right\rangle \\
& \quad=-\left(c_{\uparrow}\left|S_{z} ; \uparrow\right\rangle+c_{\downarrow}\left|S_{z} ; \downarrow\right\rangle\right),
\end{aligned}
$$

i.e. for an arbitrary spin orientation we have

$$
\Theta^{2}=-1
$$

From the relation

$$
\Theta|l m\rangle=(-1)^{m}|l,-m\rangle
$$

we see that for spinles particles we have

$$
\Theta^{2}=1
$$

In general, one can show that

$$
\begin{aligned}
\left.\Theta^{2} \mid j \text { half integer }\right\rangle & =-\mid j \text { half integer }\rangle \\
\left.\Theta^{2} \mid j \text { integer }\right\rangle & =+\mid j \text { integer }\rangle .
\end{aligned}
$$

Generally we can write

$$
\Theta=\eta e^{-i \pi J_{y} / \hbar} K
$$

Now

$$
e^{-2 i \pi J_{y} / \hbar}|j m\rangle=(-1)^{2 j}|j m\rangle,
$$

so

$$
\begin{aligned}
\Theta^{2}|j m\rangle & =\Theta\left(\eta e^{-i \pi J_{y} / \hbar}|j m\rangle\right) \\
& =|\eta|^{2} e^{-2 i \pi J_{y} / \hbar}|j m\rangle \\
& =(-1)^{2 j}|j m\rangle
\end{aligned}
$$

Thus we must have

$$
\Theta^{2}=(-1)^{2 j}
$$

Often one chooses

$$
\Theta|j m\rangle=i^{2 m}|j,-m\rangle
$$

Spherical tensors

Let us suppose that the operator A is either even or odd, i.e.

$$
\Theta A \Theta^{(-1)}= \pm A
$$

We saw that then we have

$$
\langle\alpha| A|\alpha\rangle= \pm\langle\tilde{\alpha}| A|\tilde{\alpha}\rangle .
$$

In an eigenstate of the angular momentum we have thus

$$
\langle\alpha, j m| A|\alpha, j m\rangle= \pm\langle\alpha, j,-m| A|\alpha, j,-m\rangle .
$$

Let now A be a component of a Hermitian spherical tensor:

$$
A=T_{q}^{(k)}
$$

According to the Wigner-Eckart theorem it is sufficient to consider only the component $q=0$.
We define $T^{(k)}$ to be even/odd under the time reversal if

$$
\Theta T_{q=0}^{(k)} \Theta^{-1}= \pm T_{q=0}^{(k)} .
$$

Then we have

$$
\langle\alpha, j m| T_{0}^{(k)}|\alpha, j m\rangle= \pm\langle\alpha, j,-m| T_{0}^{(k)}|\alpha, j,-m\rangle
$$

The state $|\alpha, j,-m\rangle$ is obtained by rotating the state $|\alpha, j m\rangle$:

$$
\mathcal{D}(0, \pi, 0)|\alpha, j m\rangle=e^{i \varphi}|\alpha, j,-m\rangle
$$

On the other hand, due to the definition of the spherical tensor

$$
\mathcal{D}^{\dagger}(R) T_{q}^{(k)} \mathcal{D}(R)=\sum_{q^{\prime}=-k}^{k} \mathcal{D}_{q q^{\prime}}^{(k)^{*}}(R) T_{q^{\prime}}^{(k)}
$$

we get

$$
\mathcal{D}^{\dagger}(0, \pi, 0) T_{0}^{(k)} \mathcal{D}(0, \pi, 0)=\sum_{q} \mathcal{D}_{0 q}^{(k)}(0, \pi, 0) T_{q}^{(k)}
$$

Now

$$
\mathcal{D}_{00}^{(k)}(0, \pi, 0)=P_{k}(\cos \pi)=(-1)^{k}
$$

so we have

$$
\begin{aligned}
& \mathcal{D}^{\dagger}(0, \pi, 0) T_{0}^{(k)} \mathcal{D}(0, \pi, 0) \\
& \quad=(-1)^{k} T_{0}^{(k)}+(q \neq 0 \text { components })
\end{aligned}
$$

Furthermore

$$
\langle\alpha, j m| T_{q \neq 0}^{(k)}|\alpha, j m\rangle=0
$$

since the m selection rule would require $m=m+q$. So we get

$$
\begin{aligned}
& \langle\alpha, j m| T_{0}^{(k)}|\alpha, j m\rangle \\
& \quad= \pm\langle\alpha, j m| \mathcal{D}^{\dagger}(0, \pi, 0) T_{0}^{(k)} \mathcal{D}(0, \pi, 0)|\alpha, j m\rangle \\
& \quad= \pm(-1)^{k}\langle\alpha, j m| T_{0}^{(k)}|\alpha, j m\rangle
\end{aligned}
$$

Note Unlike under other symmetries the invariance of the Hamiltonian under the time reversal

$$
[\Theta, H]=0
$$

does not lead to any conservation laws. This is due to the fact that the time evolution operator is not invariant:

$$
\Theta U\left(t, t_{0}\right) \neq U\left(t, t_{0}\right) \Theta
$$

Time reversal and degeneracy

Let us suppose that

$$
[\Theta, H]=0
$$

Then the energy eigenstates obey

$$
\begin{aligned}
H|n\rangle & =E_{n}|n\rangle \\
H \Theta|n\rangle & =E_{n} \Theta|n\rangle .
\end{aligned}
$$

If we now had

$$
\Theta|n\rangle=e^{i \delta}|n\rangle
$$

then, reapplying the time reversal we would obtain

$$
\Theta^{2}|n\rangle=e^{-i \delta} \Theta|n\rangle=|n\rangle
$$

or

$$
\Theta^{2}=1
$$

This is, however, impossible if the system j is half integer, because then $\Theta^{2}=-1$. In systems of this kind $|n\rangle$ and $\Theta|n\rangle$ are degenerate.
Example Electon in electromagnetic field
If a particle is influenced by an external static electric field

$$
V(\boldsymbol{x})=e \phi(\boldsymbol{x})
$$

then clearly the Hamiltonian

$$
H=\frac{\boldsymbol{p}^{2}}{2 m}+V(\boldsymbol{x})
$$

is invariant under the time reversal:

$$
[\Theta, H]=0
$$

If now there are odd number of electrons in the system the total j is half integer. Thus, in a system of this kind there is at least twofold degeneracy, so called Kramers' degeneracy.
In the magnetic field

$$
\boldsymbol{B}=\nabla \times \boldsymbol{A}
$$

the Hamiltonian of an electron contains such terms as

$$
S \cdot B, \quad \boldsymbol{p} \cdot \boldsymbol{A}+\boldsymbol{A} \cdot \boldsymbol{p}
$$

The magnetic field \boldsymbol{B} is external, independent on the system, so

$$
[\Theta, \boldsymbol{B}]=0 \mathrm{ja}[\Theta, \boldsymbol{A}]=0
$$

On the other hand, \boldsymbol{S} and \boldsymbol{p} are odd, or

$$
\Theta \boldsymbol{S} \Theta^{-1}=-\boldsymbol{S} \text { ja } \Theta \boldsymbol{p} \Theta^{-1}=-\boldsymbol{p}
$$

so

$$
[\Theta, H] \neq 0
$$

We say that magnetic field breaks the time reversal symmetry and lifts the Kramers degeneracy.

