Time reversal (reversal of motion)
The Newton equations of motion are invariant under the
transformation ¢ — —¢: if «(¢) is a solution of the
equation

mé = —VV(z)

then also x(—t) is a solution.

At the moment ¢ = 0 let there be a particle at the point
xz(t = 0) with the momentum p(¢ = 0). Then a particle at
the same point but with the momentum —p(t = 0)
follows the trajectory x(—t).

In the quantum mechanical Schrédinger equation

O B e
due to the first derivative with respect to the time,
¥(x,—t) is not a solution eventhough ¢ (x,t) were, but
Y*(x, —t) is. In quantum mechanics the time reversal has
obviously something to do with the complex conjugation.
Let us consider the symmetry operation

18) — 15)-

We require that the absolute value of the scalar product
is invariant under that operation:

la) — |a),

[(Bla)] = [(Bla)]-
There are two possibilities to satisfy this condition:

1. (B|&) = (B|a), so the corresponding symmetry
operator is unitary, that is

(Blay — (BIUTU|a) = (Bla).

The symmetries treated earlier have obeyed this
condition.

2. (Bla) = (Bla)* = (a|B), so the symmetry operator
cannot be unitary.

We define the antiunitary operator 6 so that

(Blay = (alp)*
O(cr]a) + c2|0)) cifla) + c30(6),

where
18) — |8) = 618)

If the operator satisfies only the last condition it is called
antilinear.
We define the complex conjugation operator K so that

@) — |@) = 6la),

Kcla) = ¢ K|a).

We present the state |«) in the base {]a’)}. The effect of
the operator K is then

S la')ala) = la) =Y (a/[a)* Kla')
> (dlela’).

a’

@) =

a

The fact that the operator K does not change the base
states can be justified like:

The state |a’) represented in the base {]a’)} maps to the
column vector

0
0

0
which is unaffected by the complex conjugation.

Note The effect of the operator K depends thus on the
choice of the basis states.

If U is a unitary operator then the operator § = UK is
antiunitary.

Proof: Firstly

0(cila) + c2|5)) UK(c1la) + ¢|5))

= (qUKla) + UK|S))
= (cifle) +c3018)),

so 0 is antiliniear. Secondly, expanding the states |a) and
|3) in a complete basis {|a’)} we get

) <= |a) = Y (a'|a) UK]a')
= (@/|a)Ula)
= > {ala)Ula)

and

16) =Y (d18)Uld") = (3] = Y _(d1B)(a|U".

a’ a’

Thus the scalar product is
(Blay = YD (a"IB)a"|UTUa' ) ald")
> {ala'){(d|B) = (alB)

= (flo)".

The operator 6 is thus indeed antiunitary. m
Let © be the time reversal operator. We consider the
transformation

@) — Oa),

where O|a) is the time reversed (motion reversed) state.
If |) is the momentum eigenstate |p’), we should have

elp') = e —p').

Let the system be at the moment ¢t = 0 in the state |«).
At a slightly later moment ¢ = §t it is in the state

la, tg = 05t = dt) = (1 - “;I(St) o).



We apply now, at the moment ¢ = 0, the time reversal
operator © and let the system evolve under the
Hamiltonian H. Then at the moment 6t the system is in

the state
i H
(1 - Zhét) Ola).

If the motion of the system is invariant under time
reversal this state should be the same as

@|OZ, to = 0, —5t>7

i.e. we first look at the state at the earlier moment —dt
and then reverse the direction of the momentum p.
Mathematically this condition can be expressed as

(1 _ fat) Ola) = 6 (1 _ f(-&)) ).

Thus we must have
—iHO|) = ©iH|),

where |) stands for an arbitrary state vector.
If © were linear we would obtain the anticommutator
relation

HO =-0H.

If now |n) is an energy eigenstate corresponding to the
eigenvalue F,, then, according to the anticommutation
rule

HO|n) = —0H|n) = (-E,)O|n),

and the state ©|n) is an energy eigenstate corresponding

to the eigenvalue —F,,. Thus most systems (those, whose

energy spectrum is not bounded) would not have any
ground state.

Thus the operator © must be antilinear, and, in order to
be a symmetry operator, it must be antiunitary. Using
the antilinearity for the right hand side of the condition

—iHO|) = ©iH|)
we can write it as
OiH|) = —iOH|).
So, we see that the operators commute:
OH = HO.

Note We have not defined the Hermitean conjugate of
the antiunitary operator # nor have we defined the
meaning of the expression (3]0. That being, we let the
time reversal operator © to operate always on the right
and with the matrix element (3|6©|a) we mean the
expression ((G]) - (©a)).

Let ® be an arbitrary linear operator. We define

lv) = ®18),

so that
Ble = (1

and
By = {yla) = (aly)
= (aloa'|s) = (alo v’ 07'0|8)
= (alo®ie7!p).

In partcular, for a Hermitean observable A we have
(BlAla) = (aloA07!(3).

We say that the observable A is even or odd under time
reversal depending on wheter in the equation

040! =44

the upper or the lower sign holds. This together with the
equation

(Bl Ala) = (al©A071(5)

imposes certain conditions on the phases of the matrix
elements of the operator A between the time reversed
states. Namely, they has to satisfy

(BlAa) = £(B]Ala)".
In particular, the expectation value satisfies the condition
(a|Ala) = £(a|Ala).

Example The expectation value of the momentum
operator p.
We require that

{alpla) = —(alpla),

so p is odd, or
OpO~—! = —p.

The momentum eigenstates satisfy

pOlp’) = —O6po~'ep)
= (-p)elp),

i.e. O|p’) is the momentum eigenstates correponding to
the eigenvalue —p':

Olp') = | —p').

Similarly we can derive for the position operator @ the
expressions

0x0 ! = g
elz’) = [z)

when we impose the physically sensible condition
(alzla) = (alz|q).

We consider the basic commutation relations
[zi, p5]1) = ihdij|).

Now

Olz;, p;]0'0|) = Oihdy;)),



from which, using the antilinearity and the time reversal
properties of the operators © and p we get

[zi, (—p;)|O|) = —ihd;;O).
We see thus that the commutation rule
[z, p5]]) = ihdy;])

remains invariant under the time reversal.
Correspondingly, the requirement of the invariance of the
commutation rule

[Ji, Jj] = iﬁeiijk
leads to the condition
0Jo ! =—J.

This agrees with transformation properties of the orbital
angular momentum x X p.

Wave functions
We expand the state |«) with the help of position
eigenstates:

@) = [ &' o) @),
Now

Ola) = /d3x'@\w’><w'\a>*

— /d3x'|az')<az’|a>*,
so under the time reversal the wave function
(') = (z'|e)

transforms like
(') — v (@),

If in particular we have
(@) = R(r)Y," (0, ),
we see that
Y™ (0,0) — V"7 (0,0) = (=1)"Y, (0, 9).

Because Y, is the wave function belonging to the state
|lm) we must have

Olim) = (=1)™|1, —m).

The probability current corresponding to the wave
function R(r)Y;™ seems to turn clockwise when looked at
from the direction of the positive z-axis and m > 0. The
probability current of the corresponding time reversed
state on the other hand turns counterclockwise because m
changes its sign under the operation.

The spinles particles obey

Theorem 1 If the Hamiltonian H is invariant under the
time reversal and the energy eigenstate |n) nondegenerate
then the corresponding energy eigenfunction is real (or
more generally a real function times a phase factor
independent on the coordinate x’).

HO|n) = ©H|n) = E,0|n),

so the states |n) and O|n) have the same energy. Because
the state |n) was supposed to be nondegenerate they
must represent the same state. The wave function of the
state |n) is (x’|n) and the one of the state O|n)
correspondingly (@’|n)*. These must be same (or more
accurately, they can differ only by a phase factor which
does not depend on the coordinate '), i.e.

(@'|n) = (@'|n)"

For example the wave function of a nondegenerate
groundstate is always real.
For a spinles particle in the state |«) we get

Ola) — @/dx'<w’|a>\x'>

— /dw’ (@'|a)"|x") = Kla),

i.e. the time reversal is equivalent to the complex
conjugation.
On the other hand, in the momentum space we have

Ola) =

because

elp’) =1-p).
The momentum space wave function transform thus
under time reversal like

o(p') — " (—p').

We consider a spin % particle the spin of which is oriented
along n. The corresponding state is obtained by rotating
the state |.S;;1):

s 1) = e~ S eI g ),

where o and 3 are the direction angles of the vector 7.
Because
0Je ' =—J.

we see that
Oln; 1) = e_iSza/he_iSyﬁ/h@Sz; 1.

Furthermore, due to the oddity of the angular
momentum, it follows that

h
Jz®|Sz§ T) = _§®‘S2; T>7

so we must have

®|Sz; T> = n|52§ l)a

where 7 is an arbitrary phase factor. So we get

Oln; 1) =nln; |).



On the other hand we have
|n; i) — e—i(xsz/ﬁe—i(ﬂ+ﬁ)5y/h|sz; T>7
SO

@|’I’L; T> — e—iSza/he—iSyﬁ/h@|Sz; T>
nefiaSz/hefi(Tr+,@)Sy/h‘Sz; T>

nn;l) =

Writing
© = UK, U unitary

and recalling that the complex conjugation K has no
effect on the base states we see that

O = ne TIMK = —in (?) K
Now
e_iﬂsy/h‘SZ;T> = +|Sz7l>
e=imSu/N| g | —152;1),

so the effect of the time reversal on a general spin % state
is

O(c1|Sx 1) + ¢1182: 1)) = +neflSz; L) — neflSe; 1)
Applying the operator © once again we get

©%(ct]S:3 1) + ¢ 1525 1))
= —[nct]S:; 1) — Inl*ey 1S5 1)
= —(c1]8:51) + 1152 1)),

i.e. for an arbitrary spin orientation we have
0% =—1.
From the relation
Ollm) = (=1)™|l, —m)
we see that for spinles particles we have
e?=1.
In general, one can show that

©?|j half integer) =
©?|j integer) =

—| half integer)
+|j integer).

Generally we can write
O = ne /MK,

Now _ A
e 2™/ jm) = (—1)%[jm),

SO
©jm) = © (ne~ v/ jm))
— |7]‘2€_2m‘]y/h|jm>

(=1)*[jm).

Thus we must have
e? = (—1)2j .
Often one chooses

Oljm) = i*™|j, —m).

Spherical tensors
Let us suppose that the operator A is either even or odd,
ie.

QA0 = 44,
We saw that then we have
(a]Ala) = £{a|A|a).
In an eigenstate of the angular momentum we have thus
(o, jm|Ala, jm) = £({«, Jj, —m| A, j, —m).

Let now A be a component of a Hermitian spherical
tensor:

_ k
A=TH.

According to the Wigner-Eckart theorem it is sufficient to
consider only the component g = 0.
We define T®) to be even/odd under the time reversal if

k) A k)
or e ! = +1.
Then we have
. k ) ; k .
(v I T5" |, jm) = +a, j, —m|T3" o, j,—m).
The state |«, j, —m) is obtained by rotating the state

|cr, ) '
D(0,7,0)|e, jm) = e"¥|a, j, —m).

On the other hand, due to the definition of the spherical
tensor

DNR)TMD(R) =

we get

D (0, 7,073 D(0,7,0) = Y DS (0,7, 00T,

q

Now
DI (0,7,0) = Py(cos) = (—1),
so we have
DY(0,7,0)73"'D(0, 7,0)
- (_1)kTék) + (g # 0 components).
Furthermore

. k .
(a, jm| T e, jm) = 0,



since the m selection rule would require m = m + ¢q. So the Hamiltonian of an electron contains such terms as
we get
S-B, p-A+A-p.

(o, I Ty e jm) . . |
. T *) ‘ The magnetic field B is external, independent on the
= +(a, jm[D'(0,7,0)T5" " D(0, 7, 0)|cx, jm) system, so

= +(=1)*(a, jm|TM |, jm). [©,B] =0ja[0,A] =0.

Note Unlike under other symmetries the invariance of On the other hand, S and p are odd, or

the Hamiltonian under the time reversal 0801 = S ja OpO~! = —p,
[0, H] =0, 0

does not lead to any conservation laws. This is due to the (6, H] #0.

fact that the time evolution operator is not invariant: We say that magnetic field breaks the time reversal

symmetry and lifts the Kramers degeneracy.
OU (t,tg) £ Ult, to)O.

Time reversal and degeneracy
Let us suppose that

[, H] = 0.

Then the energy eigenstates obey

Hln) = En[n)
HOln) = E,On).
If we now had A
Oln) = e”n),

then, reapplying the time reversal we would obtain
©%[n) = ¢~?On) = |n),

or
0% =1.

This is, however, impossible if the system j is half integer,
because then ©2 = —1. In systems of this kind |n) and
O|n) are degenerate.

Example Electon in electromagnetic field

If a particle is influenced by an external static electric
field

V() =ep(z),
then clearly the Hamiltonian

2
_pP_
H—2m+V(:1:)

is invariant under the time reversal:
[0, H] =0.

If now there are odd number of electrons in the system
the total j is half integer. Thus, in a system of this kind
there is at least twofold degeneracy, so called Kramers’
degeneracy.

In the magnetic field

B=VxA



