Perturbation theory
Stationary perturbation methods
Let us suppose that
e we have solved completely the problem
Ho|n®) = ESLO)‘H(O)>.
The basis {|n(?))} is now complete.
e the states [n(?)) are non degenerate.
e we want to solve the problem
(Ho +AV)[n)x = BN n)x.
Usualy the index A is dropped off.

When we denote
A,=E,—EY,
the eigenvalue equation to be solved takes the form
(B = Ho)ln) = (\V = Ay)n).

Note Because the expression (EY) — Hy)~![n(®) is
undefined the operator (E{” — Hy)~! is not well defined.
So, in the equation above we cannot invert the operator
(B — Hy).
Now

(nONV = Apln) = (OB — Holn),
so in the state (A\V — A, )|n) there is no component along
the state [n(?)).
We define a projection operator as

b0 =1 nO)n®] = 3 KOO
k#n

Now
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and

Since in the limit A — 0 we must have
n) — [n{),

the formal solution is of the form

1
_ (0) _
In) = cn(A)|n >+E£O)— Gn(AV — Ap)n),
where
)l\lin cn(A) =1
and

en(N) = (nO|n).

Diverting from the normal procedure we normalize

nOn) = e () = 1.

We write
n) = [n@) 4+ An®) 4 A2n@) ...
A, AAD L AZAD) 4

Because

OV — A,ln) =0,
we have, on the other hand
A, = AXnOV|n).
Thus we get

AAD +N2AD 4.
= MOV + X2 OV |nMy + ...

Equalizing the coefficients of the powers of the parameter
A we get

O AY = OV p©)
oM AP = @OV[p)
oMy A = (nOy]pN-D)

We substitute into the expression

1) P
) = 1n0) 4 o

n 0

(AV = Ay)ln)

for the state vector the power series of the state vector
and the energy correction and we get
[n©) + AlnM) + X2n@) + ...

G P
= |n'Y) + 50 I

X (|n @) + AlnMy 4+ ...

AV = AAL —AZA2) .

Equalizing the coefficients of the linear A-terms we get in
the first order

o)« [n)
¢ (0) Al (0)
E7(10) _ V|n > - ET(LO) — H, ¢n|n >
_ d)n (())
o)
because
on ALY = 0.
We substitute |n(!)) into the expression
AP = (nOV]a®),
0
A = (O %10,
" EO — H,



We substitute this further into the power series of the
state vectors and we get for the coeffients of A? the
condition
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Likewise we could continue to higher powers of the
parameter A\. This method is known as the
Rayleigh-Schrédinger perturbation theory.

The explicit expression for the second order energy
correction will be

AR = (O %10
" E© — H,
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Thus, up to the second order we have
A, = E,—EY
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We see that the perturbation mizes in also other states
(than [n(©)).
We see that

e in the 1st order we need only the matrix element V,,,,.

e in the 2nd order the energy levels 7 and j repel each
other. Namely, if EI(O) < E](O), then the contributions
of one of these states to the energy corrections of the

other are
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and the energy levels move apart from each other.

Perturbation expansions converge if |V;;/ (EZ.(O) - Ej(-o))| is
”small”. In general, no exact convergence criterion is
known.
The state |n) is not normalized. We define the normalized
state

)N = Z,/%n),

so that
(nDNn)y = Z)*(nOn) = 2)/2.

Thus the normalization factor Z,, is the probablility for
the perturbed state to be in the unperturbed state.
The normalization condition

N(nln)n = Zn(njn) =1
gives us
270 = () = (O] + AV + 22 (0P 4
X (|n@) + An®y £ A2y 4.
= 1+ 22000y £ 03

= 1+A) [Vie|
iz (B = B

+O(\3).
Up to the order A? the probability for the perturbed state
to lie in the unperturbed state is thus

The latter term can be interpreted as the probability for
the ”leakage” of the system from the state [n(?)) to other
states.

Example The quadratic Stark effect.

We consider hydrogen like atoms, i.e. atoms with one
electron outside a closed shell, under external uniform
electric field parallel to the positive z-axis. Now

p2

Hy=-—+4Vy(r) and V = —e|E|z.
2m
We suppose that the eigenstates of Hy are non degenerate
(not valid for hydrogen). The energy shift due to the
external field is
Ai = —elBla+ BE Y. 12l
k= el SRR T 20 _ O
i#k Pk j

+...,

where
2y = (]z]©).

Since we assumed the states |k(*)) to be non degenerate
they are eigenstates of the parity. So, according to the
parity selection rule the matrix element of zx; vanishes.
Indeces k and j are collective indeces standing for the
quantum number triplet (n,l,m). According to the
Wigner-Eckart theorem we have

(n',I'm’|z|n, lm)
N
5 ) 211 s

Zkj =



where we have written the operator z as the spherical
tensor
Tél) =2z.

In order to satisfy zp; # 0 we must have
e m' =m and

e !'!=10—1,1,l+1. From these I’ = [ is not suitable
due to the parity selection rule.

So we get

[
(n’,I'm’|z|n, Im) = 0 unless { : . =1
m' =m

We define the polarizability « so that
1
A=——alE|.
2

As a special case we consider the ground state
|0®) = |1,00) of hydrogen atom which is non degenerate
when we ignore the spin. The perturbation expansion
gives
0

_ 2z|k()\z|1 ,00)?

o JoiQ (0)
2o Eo By
where the summing must be extended also over the
continuum states.
Let us suppose that

E((JO) - El(€0) ~ constant,
so that
D IE@LL0002 = [(KO]2]L,00)
k#0 all k’s

= (1,00]2%|1,00).

In the spherically symmetric ground state we obviously

have )
(%) = (%) = (v*) = 3 (r?).

(2%) = aj
Now
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2a0 4
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8(10 16a
<2e%ai— = —2 ~5.3a3.
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The exact summation gives

9 3
o= % = 4.5a3.

Degeneracy
Let’s suppose that the energy state E(E?) is g-foldly
degenerated:

Holm @)y = EVm©), vjm©®) € D, dimD = g.

We want to solve the problem

(Ho + AV)[l) = Ei|l)
with the boundary condition
; (0)17(0)y141,,(0)
lim (1) — 3~ (m @) ),
meD

i.e. we are looking for corrections to the degenerated
states. With the help of the energy correction we have to
solve

(B — Ho)ll) =

We write again

AV = ADID).

11y = 1Oy ADY 4+ A2@)
A= AP AP 4
so we get
(E](:g) — Ho) (IO + MIMY 4 221y ..

=V -2l - a2AP )
X (|1OY + NIMY 4 X2 i@y 4 .. ).

Equalizing the coefficients of the powers of A we get in
the first order

(E) — Ho)ll™M)
= (V= A"
Z |m(0)><m(0)|l(0)>

meD

=(v-al)

Taking the scalar product with the vector (m/ ©

recalling that

| and

(m" ONEL ~ Ho) =0,

we end up with the simultaneous eigenvalue equations
> Vi (m @)1
m

The energy corrections Al(l)

From the equation

= AN (m' OOy,
are obtained as eigenvalues.

AV — A1)

(B — Ho)1)y =

we also see that
(MmO — Ay = 0 vjm©®) € D.

Thus the vector (V — Al(l))|l(0)> has no components in the
subspace D. Defining a projection operator as

g
o0 = 1= 3 Im@)(m®| = 3 [bO) k)

meD kgD



we can write
(V= APIO) = op(V = ATHI®) = 6pV ).
We get the equation
(Bp’ — Ho)ll") = op(AV = A))?),
where now the operator (Egj) — Hp) can be inverted:

[235)
EY — H,

Z |1€(O)>sz
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kgD E}))_El(e)

|l(1)> V|l(0)>

When we again normalize
(O =1,
we get from the equation
(Ep — Ho)ll) = (A — Apll)
for the energy shift
A= 21OV D).
We substitute the power series and get

MO (1O 4 NIDY 4 221y 4.
(1) )
=M+ A2AT 4

The second order energy correction is now
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0

)
3 [Via|?

-
0 0)"
keDE(D)_EI(c)

Thus the perturbation calculation in a degenerate system
proceeds as follows:

1° Identify the degenerated eigenstates. We suppose
that their count is g. Construct the
g x g-perturbation matrix V.

2° Diagonalize the perturbation matrix.

3° The resulting eigenvalues are first order corrections
for the energy shifts. The corresponding eigenvectors
are those zeroth order eigenvectors to which the
corrected eigenvectors approach when A — 0.

4° Evaluate higher order corrections using non
degenerate perturbation methods but omit in the
summations all contributions coming from the
degenerated state vectors of the space D.

Example The Stark efect in the hydrogen atom.
The hydrogen 2s (n = 2,1 =0, m = 0) and 2p
(n=2,1=1,m = —1,0,1) states are degenerate. Their
energy is

Eg)) = —62/8a0.

We put the atom in external electric field parallel to the
z-axis:

V = —ez|E)|.

Now z is the ¢ = 0 component of a spherical tensor:
_ (1)
z="T5".

According to the parity selection rule the operator V' now
has nonzero matrix elements only between states with

[ =0 and [ =1, and due to the m-selection rule all states
must have the same m:

2s 2p,0 2p,1 2p,—1

2s 0 x 0 0
o0 [ x 0 0 0
o1 |0 0 0 0
29,-1\ 0 0 0 0

The nonzero matrix elements are
(2s|V]2p,m = 0) = (2p, m = 0|V |2s) = 3eap|E].
The eigenvalues of the perturbation matrix are
AW = +£3ea|E|

and the eigenvectors

1
+)=—(2s,m=0) £ |2p,m =0)).
|£) \[2( | )£ )
Note The energy shift is a linear function of the electric
field. The states |£) are not parity eigenstates so it is
perfectly possible that they have permanent electric
dipole moment (z) # 0.

Nearly degenerated states
Let the states m € D to be almost degenerate. We write

V=V +s,
where
Vo= 33 O m O @)
meD m’eD
Vo = V-VW.

We proceed so that

1. we diagonalize the Hamiltonian Hy + V; exactly in
the basis {|m(®)} and

2. handle the term V5 like in an ordinary non
degenerate perturbation theory. This is possible since

(/O Valm®@) =0 Vm,m' € D.

Example Weak periodic potential.

Now 5
p
Hy=—
0 2m

and for the perturbation

V(z) =V(x+a).



We denote the unperturbed eigenstates by the wave
vector:

h2 k>
Holk) = k
olk) = %~ k),
so that -
7k
oL
2m

We impose the periodic boundary conditions
(2'[k) = (a’) = (&' + LIk) = ¢u(a’ + L),
for the wave function and get
1 . 2
Pp(z') = —=e* | k= —Wn,n el

NG L

Because the potential V' is periodic it can be represented
as the Fourier series

o0

Viz)= > "k,
where
K =2n/a

is the reciprocal lattice vector. The only nonzero matrix
elements are now

(k+nK|V|k) =V,,
because

(K'[V|k)

]. IS RN ’o. ’
Z 2 :Vn dac’e ik'x eana: eznka:
n

Z Vi Oktnic i -
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So the potential couples states
k), |k + K),...,|[k+nK),....
The corresponding energy denominators are
(0) (0)
By = Bk

In general
(0) (0)
B # Elnk

except when

nK
k~———0».
2
We suppose that the condition
nK
kot
7 2
holds safely. The first order state vectors are then
|k(1)> = |k) + Z |k + nK}L
O _p© 7
n#0 k k+nK

and the wave functions

)y, 1 ikx' 1 i(k+nK)z' Vn
) = ety e PG Ry
VL VL EY —BO

Correspondingly the energy up to the second order is

2 0 |an|2
B =B +Vo+ Y o
n#0 Ek _Ek:JrnK

Let us suppose now that

We diagonalize the Hamiltonian in the basis
{1k}, [k +nK)},
i.e. we diagonalize the matrix

|k) |k + nk)

k) EX+v W
|k + nK) v, ED vy )

Its eigenvalues are

0 0
2

2
20 50
+ ( k 5 k+nK +|Vn|2

When |El(€0) - E,(C(i)nK| > |V, it reduces to two solutions

Err =Vo+

EY +V,
El(c?k)nK + VO?

Ek+ -
B, =

which are first order corrected energies. In the limiting
case we get

; _ (0
e A

Brillouin-Wigner perturbation theory
We start with the Schrédinger equation
(E, — Hp)|n) = AVn),

and take on both sides the scalar product with the state
|m (), and get

(Bn = ELD)(mOn) = MmOV |n).

We correct the state [n(?)). We write the corrected state
|n) in the form

n) D MmO n) = [0O) (0 ) + duln)

= [nO)+ > @) m ),

m#n

which has been normalized, like before,

(nO|n) = 1.



We substitute into this the scalar products

MmO |Vn)
Oy = 21V
m e = B, — B9’

and end up with the fundamental equation of the
Brillouin- Wigner method

A
n) = In@) + Z m®) m< m©Vin).
m#n

Iteration gives us the series
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Note This is not a power series of the parameter A
because the energy denominators

E,—E9 =E® _E0 4 A,
depend also on the parameter A according to the equation

A, = )\Agll) _;’_)\QASLQ) 4+



