Time dependent potentials

We have solved the problem

$$H_0|n\rangle = E_n|n\rangle$$

completely and want to solve the eigenstates of the Hamiltonian

$$H = H_0 + V(t)$$
.

Since the Hamiltonian depends on time we have

$$\mathcal{U} \neq e^{-iHt/\hbar}$$

so a system in a stationary state $|i\rangle$ can in the course of time get components also in other stationary states.

Pictures of the time evolution

At the moment t = 0 let the system be in the state

$$|\alpha\rangle = \sum_{n} c_n(0)|n\rangle$$

and at the moment t in the state

$$|\alpha, t_0 = 0; t\rangle = \sum_n c_n(t) e^{-iE_n t/\hbar} |n\rangle.$$

Note The time dependence of the coefficients $c_n(t)$ is due only to the potential V(t). The effect of the Hamiltonian H_0 is in the phase factors $e^{-iE_nt/\hbar}$.

Schrödinger's picture

The evolution of the state vectors is governed by the time evolution operator:

$$|\alpha, t_0 = 0; t\rangle_S = \mathcal{U}(t)|\alpha, t_0 = 0\rangle.$$

Heisenberg's picture

The state vectors remain constant, i.e.

$$|\alpha, t_0 = 0, t\rangle_H = |\alpha, t_0 = 0\rangle.$$

On the other hand, the operators depend on time. We can go from the time independent operators of the Schrödinger picture to the operators of the Heisenberg picture via the transformation

$$A_H(t) = \mathcal{U}^{\dagger}(t) A_S \mathcal{U}(t).$$

If the Hamiltonian does not depend on time then

$$H_H(t) = \mathcal{U}^{\dagger}(t)H\mathcal{U}(t) = H$$

and

$$\frac{dA_H}{dt} = \frac{1}{i\hbar}[A_H, H_H] = \frac{1}{i\hbar}[A_H, H].$$

Interaction picture

The state vectors depend on time as

$$|\alpha, t_0; t\rangle_I \equiv e^{iH_0t/\hbar} |\alpha, t_0; t\rangle_S.$$

At the moment t = 0 we have obviously

$$|\rangle_S = |\rangle_I = |\rangle_H$$
.

The interaction picture observables A_I are defined so that

$$A_I \equiv e^{iH_0t/\hbar} A_S e^{-iH_0t/\hbar}$$
.

In particular we have

$$V_I = e^{iH_0t/\hbar} V e^{-iH_0t/\hbar}.$$

We see that the equation governing the time dpendence of the interaction picture state vectors is

$$\begin{split} i\hbar \frac{\partial}{\partial t} |\alpha, t_0; t\rangle_I \\ &= i\hbar \frac{\partial}{\partial t} \left(e^{iH_0 t/\hbar} |\alpha, t_0; t\rangle_S \right) \\ &= -H_0 e^{iH_0 t/\hbar} |\alpha, t_0; t\rangle_S \\ &+ e^{iH_0 t/\hbar} (H_0 + V) |\alpha, t_0; t\rangle_S \\ &= e^{iH_0 t/\hbar} V e^{-iH_0 t/\hbar} e^{iH_0 t/\hbar} |\alpha, t_0; t\rangle_S. \end{split}$$

so

$$i\hbar \frac{\partial}{\partial t} |\alpha, t_0; t\rangle_I = V_I |\alpha, t_0; t\rangle_I.$$

If now A_S does not depend on time we can derive

$$\frac{dA_I}{dt} = \frac{1}{i\hbar} [A_I, H_0],$$

which in turn resembles the Heisenberg equation of motion provided that in the latter we substitute for the total Hamiltonian H the stationary operator H_0 . We expand state vectors in the base $\{|n\rangle\}$:

$$|\alpha, t_0; t\rangle_I = \sum_n c_n(t)|n\rangle.$$

If now $t_0 = 0$ so multiplying the previous expansion

$$|\alpha, t_0 = 0; t\rangle = \sum_n c_n(t) e^{-iE_n t/\hbar} |n\rangle$$

on both sides by the operator $e^{-iH_0t/\hbar}$ we get

$$|\alpha, t_0 = 0; t\rangle_I = \sum_n c_n(t)|n\rangle,$$

i.e. the coefficients c_n are equal. We just derived the equation

$$i\hbar \frac{\partial}{\partial t} |\alpha, t_0; t\rangle_I = V_I |\alpha, t_0; t\rangle_I.$$

From this we get

$$\begin{split} i\hbar\frac{\partial}{\partial t}\langle n|\alpha,t_0;t\rangle_I &= \langle n|V_I|\alpha,t_0;t\rangle_I \\ &= \sum_{-}\langle n|V_I|m\rangle\langle m|\alpha,t_0;t\rangle_I. \end{split}$$

The matrix elements of the operator V_I are

$$\langle n|V_I|m\rangle = \langle n|e^{iH_0t/\hbar}Ve^{-iH_0t/\hbar}|m\rangle$$

= $V_{nm}(t)e^{i(E_n-E_m)t/\hbar}$

Because we furthermore have

$$c_n(t) = \langle n | \alpha, t_0; t \rangle_I$$

we can write the equation governing the time dependence of the superposition coefficients as

$$i\hbar \frac{d}{dt}c_n(t) = \sum_m V_{nm}e^{i\omega_{nm}t}c_m(t),$$

where

$$\omega_{nm} \equiv \frac{E_n - E_m}{\hbar} = -\omega_{mn}.$$

This system of differential equations can be written explicitely in the matrix form

$$i\hbar \begin{pmatrix} \dot{c}_{1} \\ \dot{c}_{2} \\ \dot{c}_{3} \\ \vdots \end{pmatrix}$$

$$= \begin{pmatrix} V_{11} & V_{12}e^{i\omega_{12}t} & \cdots \\ V_{21}e^{i\omega_{21}t} & V_{22} & \cdots \\ & & V_{33} & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} c_{1} \\ c_{2} \\ c_{3} \\ \vdots \end{pmatrix}.$$

Example Two state systems.

Suppose that

$$H_0 = E_1|1\rangle\langle 1| + E_2|2\rangle\langle 2| \quad (E_1 < E_2)$$

and that the time dependent potential is like

$$V(t) = \gamma e^{i\omega t} |1\rangle\langle 2| + \gamma e^{-i\omega t} |2\rangle\langle 1|.$$

The matrix elements V_{nm} are now

$$V_{12} = V_{21}^* = \gamma e^{i\omega t}$$

$$V_{11} = V_{22} = 0,$$

so transitions between the states $|1\rangle$ and $|2\rangle$ are possible. The system of differential equations to be solved is

$$i\hbar \dot{c}_1 = \gamma e^{i\omega t} e^{i\omega_{12}t} c_2$$

$$i\hbar \dot{c}_2 = \gamma e^{-i\omega t} e^{i\omega_{21}t} c_1,$$

where

$$\omega_{21} = -\omega_{12} = \frac{E_2 - E_1}{\hbar}.$$

We can see that the solution satisfying the initial conditions

$$c_1(0) = 1, \quad c_2(0) = 0$$

is

$$|c_2(t)|^2 = \frac{\gamma^2/\hbar^2}{\gamma^2/\hbar^2 + (\omega - \omega_{21})^2/4} \times \sin^2 \left\{ \left[\frac{\gamma^2}{\hbar^2} + \frac{(\omega - \omega_{21})^2}{4} \right]^{1/2} t \right\}$$

$$|c_1(t)|^2 = 1 - |c_2(t)|^2.$$

The system oscillates between the states $|1\rangle$ and $|2\rangle$ with the angular velocity

$$\Omega = \sqrt{\left(\frac{\gamma^2}{\hbar^2}\right) + \frac{(\omega - \omega_{21})^2}{4}}.$$

The amplitude of the oscillations is at its maximum, i.e. we are in a resonance, when

$$\omega \approx \omega_{21} = \frac{E_2 - E_1}{\hbar}.$$

Example Spin magnetic resonance. We put a spin $\frac{1}{2}$ particle into

- ullet time independent magnetic field parallel to the z axis,
- time dependent magnetic field rotating in the xy plane,

i.e.

$$\mathbf{B} = B_0 \hat{\mathbf{z}} + B_1 (\hat{\mathbf{x}} \cos \omega t + \hat{\mathbf{y}} \sin \omega t)$$

when the fields B_0 and B_1 are constant. Since the magnetic moment of the electron is

$$\boldsymbol{\mu} = \frac{e}{m_e c} \boldsymbol{S},$$

the Hamiltonian is the sum of the terms

$$H_{0} = -\left(\frac{e\hbar B_{0}}{2m_{e}c}\right) (|S_{z};\uparrow\rangle\langle S_{z};\uparrow| - |S_{z};\downarrow\rangle\langle S_{z};\downarrow|)$$

$$V(t) = -\left(\frac{e\hbar B_{1}}{2m_{e}c}\right)$$

$$\times \left[\cos \omega t(|S_{z};\uparrow\rangle\langle S_{z};\downarrow| + |S_{z};\downarrow\rangle\langle S_{z};\uparrow|)\right]$$

$$+\sin \omega t(-i|S_{z};\uparrow\rangle\langle S_{z};\downarrow| + i|S_{z};\downarrow\rangle\langle S_{z};\uparrow|)\right].$$

If e < 0, then

$$E_2 = E_{\uparrow} = \frac{|e|\hbar B_0}{2m_e c} > E_1 = E_{\downarrow} = -\frac{|e|\hbar B_0}{2m_e c}$$

We can thus identify in the above treated two stated system the quantities:

$$\begin{array}{rccc} |S_z;\uparrow\rangle & \mapsto & |2\rangle & \text{(higher state)} \\ |S_z;\downarrow\rangle & \mapsto & |1\rangle & \text{(lower state)} \\ \frac{|e|B_0}{m_ec} & \mapsto & \omega_{21} \\ -\frac{e\hbar B_1}{2m_ec} & \mapsto & \gamma, & \omega \mapsto \omega. \end{array}$$

Comparing with our earlier discussion on the spin precession we see that

- if $B_1 = 0$ and $B_0 \neq 0$, the the expectation value $\langle S_{x,y} \rangle$ rotates in the course of time counterclockwise but the probabilities $|c_1|^2$ and $|c_2|^2$ remain still constant.
- if $B_1 \neq 0$, the the coefficients $|c_1|^2$ and $|c_2|^2$ are functions of time.

When the resonance condition

$$\omega \approx \omega_{21}$$

holds the probability for the spin flips

$$|S_z;\uparrow\rangle\longleftrightarrow|S_z;\downarrow\rangle$$

is very high.

Because experimental production of rotating magnetic fields is difficult it is common to use a field oscillating for example along the x axis. This can be divided into components rotating counterclockwise and clockwise:

$$2B_1\hat{\boldsymbol{x}}\cos\omega t$$

$$= B_1(\hat{\boldsymbol{x}}\cos\omega t + \hat{\boldsymbol{y}}\sin\omega t)$$

$$+B_1(\hat{\boldsymbol{x}}\cos\omega t - \hat{\boldsymbol{y}}\sin\omega t).$$

In experiments one usually has

$$\frac{B_1}{B_0} \ll 1$$
,

so

$$\frac{\gamma}{\hbar} = \frac{|e|B_1}{4m_ec} = \frac{|e|B_0}{m_ec} \, \frac{B_1}{4B_0} = \omega_{21} \frac{B_1}{4B_0} \ll \omega_{21}.$$

If now the component rotating counterclockwise triggers the resonance condition

$$\omega \approx \omega_{21}$$

the the transition probability due to this component is

$$|c_R(t)|^2 = \frac{\gamma^2/\hbar^2}{\gamma^2/\hbar^2 + (\omega - \omega_{21})^2/4} \times \sin^2\left\{\left[\frac{\gamma^2}{\hbar^2} + \frac{(\omega - \omega_{21})^2}{4}\right]^{1/2} t\right\}$$

$$\approx \sin^2\left(\frac{\gamma}{\hbar}t\right).$$

The clockwise rotating component,

$$\omega = -\omega_{21},$$

contributes

$$|c_L(t)|^2 \approx \frac{\gamma^2/\hbar^2}{\gamma^2/\hbar^2 + \omega_{21}^2} \times \sin^2\left\{\left[\frac{\gamma^2}{\hbar^2} + \omega_{21}^2\right]^{1/2} t\right\}$$

$$\ll |c_R(t)|^2.$$