
Time dependent potentials
We have solved the problem

H0|n〉 = En|n〉

completely and want to solve the eigenstates of the
Hamiltonian

H = H0 + V (t).

Since the Hamiltonian depends on time we have

U 6= e−iHt/h̄,

so a system in a stationary state |i〉 can in the course of
time get components also in other stationary states.

Pictures of the time evolution

At the moment t = 0 let the system be in the state

|α〉 =
∑

n

cn(0)|n〉

and at the moment t in the state

|α, t0 = 0; t〉 =
∑

n

cn(t)e−iEnt/h̄|n〉.

Note The time dependence of the coefficients cn(t) is due
only to the potential V (t). The effect of the Hamiltonian
H0 is in the phase factors e−iEnt/h̄.
Schrödinger’s picture
The evolution of the state vectors is governed by the time
evolution operator:

|α, t0 = 0; t〉S = U(t)|α, t0 = 0〉.

Heisenberg’s picture
The state vectors remain constant, i.e.

|α, t0 = 0, t〉H = |α, t0 = 0〉.

On the other hand, the operators depend on time. We
can go from the time independent operators of the
Schrödinger picture to the operators of the Heisenberg
picture via the transformation

AH(t) = U†(t)ASU(t).

If the Hamiltonian does not depend on time then

HH(t) = U†(t)HU(t) = H

and
dAH

dt
=

1
ih̄

[AH ,HH ] =
1
ih̄

[AH ,H].

Interaction picture
The state vectors depend on time as

|α, t0; t〉I ≡ eiH0t/h̄|α, t0; t〉S .

At the moment t = 0 we have obviously

|〉S = |〉I = |〉H .

The interaction picture observables AI are defined so that

AI ≡ eiH0t/h̄ASe−iH0t/h̄.

In particular we have

VI = eiH0t/h̄V e−iH0t/h̄.

We see that the equation governing the time dpendence
of the interaction picture state vectors is

ih̄
∂

∂t
|α, t0; t〉I

= ih̄
∂

∂t

(
eiH0t/h̄|α, t0; t〉S

)
= −H0e

iH0t/h̄|α, t0; t〉S
+eiH0t/h̄(H0 + V )|α, t0; t〉S

= eiH0t/h̄V e−iH0t/h̄eiH0t/h̄|α, t0; t〉S ,

so
ih̄

∂

∂t
|α, t0; t〉I = VI |α, t0; t〉I .

If now AS does not depend on time we can derive

dAI

dt
=

1
ih̄

[AI ,H0],

which in turn resembles the Heisenberg equation of
motion provided that in the latter we substitute for the
total Hamiltonian H the stationary operator H0.
We expand state vectors in the base {|n〉}:

|α, t0; t〉I =
∑

n

cn(t)|n〉.

If now t0 = 0 so multiplying the previous expansion

|α, t0 = 0; t〉 =
∑

n

cn(t)e−iEnt/h̄|n〉

on both sides by the operator e−iH0t/h̄ we get

|α, t0 = 0; t〉I =
∑

n

cn(t)|n〉,

i.e. the coefficients cn are equal. We just derived the
equation

ih̄
∂

∂t
|α, t0; t〉I = VI |α, t0; t〉I .

From this we get

ih̄
∂

∂t
〈n|α, t0; t〉I = 〈n|VI |α, t0; t〉I

=
∑
m

〈n|VI |m〉〈m|α, t0; t〉I .

The matrix elements of the operator VI are

〈n|VI |m〉 = 〈n|eiH0t/h̄V e−iH0t/h̄|m〉
= Vnm(t)ei(En−Em)t/h̄

.



Because we furthermore have

cn(t) = 〈n|α, t0; t〉I ,

we can write the equation governing the time dependence
of the superposition coefficients as

ih̄
d

dt
cn(t) =

∑
m

Vnmeiωnmtcm(t),

where
ωnm ≡

En − Em

h̄
= −ωmn.

This system of differential equations can be written
explicitely in the matrix form

ih̄


ċ1

ċ2

ċ3

...



=


V11 V12e

iω12t · · ·
V21e

iω21t V22 · · ·
V33 · · ·

...
...

. . .




c1

c2

c3

...

 .

Example Two state systems.
Suppose that

H0 = E1|1〉〈1|+ E2|2〉〈2| (E1 < E2)

and that the time dependent potential is like

V (t) = γeiωt|1〉〈2|+ γe−iωt|2〉〈1|.

The matrix elements Vnm are now

V12 = V ∗
21 = γeiωt

V11 = V22 = 0,

so transitions between the states |1〉 and |2〉 are possible.
The system of differential equations to be solved is

ih̄ċ1 = γeiωteiω12tc2

ih̄ċ2 = γe−iωteiω21tc1,

where
ω21 = −ω12 =

E2 − E1

h̄
.

We can see that the solution satisfying the initial
conditions

c1(0) = 1, c2(0) = 0

is

|c2(t)|2 =
γ2/h̄2

γ2/h̄2 + (ω − ω21)2/4

× sin2

{[
γ2

h̄2 +
(ω − ω21)2

4

]1/2

t

}
|c1(t)|2 = 1− |c2(t)|2.

The system oscillates between the states |1〉 and |2〉 with
the angular velocity

Ω =

√(
γ2

h̄2

)
+

(ω − ω21)2

4
.

The amplitude of the oscillations is at its maximum, i.e.
we are in a resonance, when

ω ≈ ω21 =
E2 − E1

h̄
.

Example Spin magnetic resonance.
We put a spin 1

2 particle into

• time independent magnetic field parallel to the z
axis,

• time dependent magnetic field rotating in the xy
plane,

i.e.
B = B0ẑ + B1(x̂ cos ωt + ŷ sinωt)

when the fields B0 and B1 are constant. Since the
magnetic moment of the electron is

µ =
e

mec
S,

the Hamiltonian is the sum of the terms

H0 = −
(

eh̄B0

2mec

)
(|Sz; ↑〉〈Sz; ↑ | − |Sz; ↓〉〈Sz; ↓ |)

V (t) = −
(

eh̄B1

2mec

)
×

[
cos ωt(|Sz; ↑〉〈Sz; ↓ |+ |Sz; ↓〉〈Sz; ↑ |)

+ sinωt(−i|Sz; ↑〉〈Sz; ↓ |+ i|Sz; ↓〉〈Sz; ↑ |)
]
.

If e < 0, then

E2 = E↑ =
|e|h̄B0

2mec
> E1 = E↓ = −|e|h̄B0

2mec
.

We can thus identify in the above treated two stated
system the quantities:

|Sz; ↑〉 7→ |2〉 (higher state)
|Sz; ↓〉 7→ |1〉 (lower state)
|e|B0

mec
7→ ω21

−eh̄B1

2mec
7→ γ, ω 7→ ω.

Comparing with our earlier discussion on the spin
precession we see that

• if B1 = 0 and B0 6= 0, the the expectation value
〈Sx,y〉 rotates in the course of time counterclockwise
but the probabilities |c1|2 and |c2|2 remain still
constant.

• if B1 6= 0, the the coefficients |c1|2 and |c2|2 are
functions of time.



When the resonance condition

ω ≈ ω21

holds the probability for the spin flips

|Sz; ↑〉 ←→ |Sz; ↓〉

is very high.
Because experimental production of rotating magnetic
fields is difficult it is common to use a field oscillating for
example along the x axis. This can be divided into
components rotating counterclockwise and clockwise:

2B1x̂ cos ωt

= B1(x̂ cos ωt + ŷ sinωt)
+B1(x̂ cos ωt− ŷ sinωt).

In experiments one usually has

B1

B0
� 1,

so
γ

h̄
=
|e|B1

4mec
=
|e|B0

mec

B1

4B0
= ω21

B1

4B0
� ω21.

If now the component rotating counterclockwise triggers
the resonance condition

ω ≈ ω21,

the the transition probability due to this component is

|cR(t)|2 =
γ2/h̄2

γ2/h̄2 + (ω − ω21)2/4

× sin2

{[
γ2

h̄2 +
(ω − ω21)2

4

]1/2

t

}
≈ sin2

(γ

h̄
t
)

.

The clockwise rotating component,

ω = −ω21,

contributes

|cL(t)|2 ≈ γ2/h̄2

γ2/h̄2 + ω2
21

× sin2

{[
γ2

h̄2 + ω2
21

]1/2

t

}
� |cR(t)|2.


