
Time dependent perturbation theory
In the interaction picture the time evolution operator is
determined by the equation

|α, t0; t〉I = UI(t, t0)|α, t0; t0〉I .

Since the time evolution of the state vectors is governed
by the equation

ih̄
∂

∂t
|α, t0; t〉I = VI |α, t0; t〉I

= VIUI(t, t0)|α, t0; t0〉I ,

we see that

ih̄
∂UI(t, t0)

∂t
|α, t0; t0〉I = VIUI(t, t0)|α, t0; t0〉I .

The interaction picture time evolution operator satisfies
thus the equation

ih̄
d

dt
UI(t, t0) = VI(t)UI(t, t0).

As the initial condition we have obviously

UI(t, t0)
∣∣
t=t0

= 1.

Integration gives

UI(t, t0) = 1− i

h̄

∫ t

t0

VI(t′)UI(t′, t0) dt′.

By iteration we end up with Dyson’s series

UI(t, t0)

= 1− i

h̄

∫ t

t0

VI(t′)

[
1− i

h̄

∫ t′

t0

VI(t′′)UI(t′′) dt′′

]
dt′

= 1− i

h̄

∫ t

t0

dt′ VI(t′)

+
(
− i

h̄

)2 ∫ t

t0

dt′
∫ t′

t0

dt′′ VI(t′)VI(t′′)

+ · · ·+
(
− i

h̄

)n ∫ t

t0

dt′
∫ t′

t0

dt′′ · · ·

×
∫ t(n−1)

t0

dt(n)VI(t′)VI(t′′) · · ·VI(t(n))

+ · · · .

Let us suppose again that we have solved the problem

H0|n〉 = En|n〉

completely. Let the initial state of the system be |i〉 at
the moment t = t0 = 0, i.e.

|α, t0 = 0; t = 0〉I = |i〉.

At the moment t this has evolved to the state

|i, t0 = 0; t〉I = UI(t, 0)|i〉
=

∑
n

|n〉〈n|UI(t, 0)|i〉.

Here
〈n|UI(t, 0)|i〉 = cn(t)

is the same as the superposition coefficient we used before.
From the relation binding the interaction and Schrödinger
picture state vectors we get

|α, t0; t〉I = eiH0t/h̄|α, t0; t〉S
= eiH0t/h̄U(t, t0)|α, t0; t0〉S
= eiH0t/h̄U(t, t0)e−iH0t0/h̄|α, t0; t0〉I ,

so the time evolution operators of these pictures are
obtained with the help of the formula

UI(t, t0) = eiH0t/h̄U(t, t0)e−iH0t0/h̄.

The matrix elements of the operator UI(t, t0) can now be
calculated from the relation

〈n|UI(t, t0)|i〉 = ei(Ent−Eit0)/h̄〈n|U(t, t0)|i〉.

We see that

• the matrix element 〈n|UI(t, t0)|i〉 is not quite the
transition amplitude 〈n|U(t, t0)|i〉,

• the transition probabilities satisfy

|〈n|UI(t, t0)|i〉|2 = |〈n|U(t, t0)|i〉|2.

Note If the states |a′〉 and |b′〉 are not eigenstates of H0

then
|〈b′|UI(t, t0)|a′〉|2 6= |〈b′|U(t, t0)|a′〉|2.

In this case the matrix elements are evaluated by
expanding the states |a′〉 and |b′〉 in the base {|n〉}
formed by the eigenstates of H0.
Let us suppose now that at the moment t = t0 the system
is in the eigenstate |i〉 of H0. This state vector can always
be multiplied by an arbitrary phase factor, so the
Schrödinger picture state vector |i, t0; t0〉S can be chosen
as

|i, t0; t0〉S = e−iEit0/h̄|i〉.

Then in the interaction picture we have

|i, t0; t0〉I = |i〉.

At the moment t this has evolved to the state

|i, t0; t〉I = UI(t, t0)|i〉 =
∑

n

cn(t)|n〉,

so
cn(t) = 〈n|UI(t, t0)|i〉,

as we already noted.
Now

1. substitute the Dyson series into this

2. expand the coefficient as a power series of the
perturbation

cn(t) = c(0)
n (t) + c(1)

n (t) + c(2)
n (t) + · · · ,



3. equalize the terms c
(k)
n with the perturbation terms

of the order k,

4. denote
ei(En−Ei)t/h̄ = eiωnit.

We get

c(0)
n (t) = δni

c(1)
n (t) = − i

h̄

∫ t

t0

〈n|VI(t′)|i〉 dt′

= − i

h̄

∫ t

t0

eiωnit
′
Vni(t′) dt′

c(2)
n (t) =

(
− i

h̄

)2∑
m

∫ t

t0

dt′
∫ t′

t0

dt′′ eiωnmt′Vnm(t′)

×eiωmit
′′
Vmi(t′′).

The probability for the transition from the state |i〉 to the
state |n〉 can be written as

Pr(i → n) = |cn(t)|2 = |c(1)
n (t) + c(2)

n (t) + · · · |2.

Fermi’s golden rule

Consider the constant perturbation

V (t) =
{

0, when t < 0
V (time independent) when t ≥ 0.

switched on at the moment t = 0. At the moment t = 0
let the system be in the pure state |i〉. Now

c(0)
n = c(0)

n (0) = δin

c(1)
n = − i

h̄
Vni

∫ t

0

eiωnit
′
dt′

=
Vni

En − Ei
(1− eiωnit).

The transition probability to the state |n〉 is thus

|c(1)
n |2 =

|Vni|2

|En − Ei|2
(2− 2 cos ωnit)

=
4|Vni|2

|En − Ei|2
sin2

[
(En − Ei)t

2h̄

]
.

The quantity

ω ≡ En − Ei

h̄

is almost continuous because usually the En states form
almost a continuum. The transition probability is now

|c(1)
n |2 =

|Vni|2

h̄2 f(ω),

where

f(ω) =
4 sin2 ωt/2

ω2 .
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When t is large then |cn(t)|2 6= 0 only if

t ≈ 2π

ω
=

2πh̄

|En − Ei|
.

If now ∆t is the time the perturbation has been on then
transitions are possible only if

∆t∆E ≈ h̄.

Note If the energy is conserved exactly, i.e.

En = Ei,

then
|c(1)

n (t)|2 =
1
h̄2 |Vni|2t2.

The transition probability is proportional to the square of
the on-time of the perturbation (and not linearly
proportional to the time).
In general we are interested in transitions in which the
initial state |i〉 is fixed but the final state |n〉 can be any
state satisfying the energy conservation rule

En ≈ Ei

The total probability for such a transition is now

Pr(i → f)

=
∑

n
En≈Ei

|c(1)
n (t)|2

=
∫

dEn ρ(En)|c(1)
n |2

= 4
∫

sin2

[
(En − Ei)t

2h̄

]
|Vni|2

|En − Ei|2
ρ(En) dEn.



Here ρ(E) is the density of states, i.e.

ρ(E)dE = the number of states between(E,E + dE).

Because

lim
t→∞

1
π

sin2 xt

tx2 = δ(x),

we get

lim
t→∞

1
(En − Ei)2

sin2 En − Ei

2h̄
t =

πt

4h̄2 δ

(
En − Ei

2h̄

)
=

πt

2h̄
δ(En − Ei).

The transition probability is thus

lim
t→∞

Pr(i → f) =
(

2π

h̄

)
|Vni|2ρ(En)t

∣∣∣
En≈Ei

,

where |Vni|2 is the average of the term |Vni|2.
Note The total transition probability depends linearly
on time t.
The transition rate w is defined to be the transition
probability per unit time. We end up with the Fermi
golden rule

wi→f =
d

dt

(∑
n

|c(1)
n (t)|2

)

=
(

2π

h̄

)
|Vni|2ρ(En)

∣∣∣
En≈Ei

.

Quite often this is also written as

wi→n =
(

2π

h̄

)
|Vni|2δ(En − Ei),

but then one implicitely assumes that it will be integrated
in the expression

∫
dEn ρ(En)wi→n · · ·.

Second order corrections

In the second order we got

c(2)
n (t) =

(
− i

h̄

)2∑
m

∫ t

t0

dt′
∫ t′

t0

dt′′ eiωnmt′Vnm(t′)

×eiωmit
′′
Vmi(t′′),

so in the case of the potential

V (t) =
{

0, when t < 0
V (time independent) when t ≥ 0.

we have

c(2)
n =

(
− i

h̄

)2∑
m

VnmVmi

∫ t

0

dt′ eiωnmt′
∫ t′

0

dt′′ eiωmit
′′

=
i

h̄

∑
m

VnmVmi

Em − Ei

∫ t

0

(eiωnit
′
− eiωnmt′)dt′.

Above

• the term eiωnit
′
is same as in the coefficient c

(1)
n , so it

contributes only if En ≈ Ei when t →∞.

• if Em in the term eiωnmt′ differs from En and at the
same time from Ei it oscillates rapidly and
contributes nothing.

So we can write

wi→f =
2π

h̄

∣∣∣∣∣Vni +
∑
m

VnmVmi

Ei − Em

∣∣∣∣∣
2

ρ(En)

∣∣∣∣∣∣
En≈Ei

.

In the second order the term VnmVmi can be thougth to
describe virtual transitions

|i〉 −→ |m〉 −→ |n〉.

Harmonic perturbations

Consider the potential

V (t) = Veiωt + V†e−iωt,

which is again assumed to be switched on at the moment
t = 0. When t < 0, the system is supposed to be in the
state |i〉. The first order term is now

c(1)
n = − i

h̄

∫ t

0

(
Vnie

iωt′ + V†nie
−iωt′

)
eiωnit

′
dt′

=
1
h̄

[
1− ei(ω+ωni)t

ω + ωni
Vni +

1− ei(ω−ωni)t

−ω + ωni
V†ni

]
.

This is of the same form as in the case of our earlier step
potential, provided that we substitute

ωni =
En − Ei

h̄
−→ ωni ± ω.

When t →∞, |c(1)
n |2 is thus non zero only if

ωni + ω ≈ 0 or En ≈ Ei − h̄ω

ωni − ω ≈ 0 or En ≈ Ei + h̄ω.

Obviously, if the first term is important the second one
does not contribute and vice versa. The energy of a
quantum mechanical system is not conserved in these
transitions but the ”external” potential either gives
(absorption) or takes (stimulated emission) energy
to/from the system. Analogically to the constant
potential the transition rate will be

wi→n =
2π

h̄
|Vni|2δ(En − Ei ± h̄ω).


