Time dependent perturbation theory
In the interaction picture the time evolution operator is
determined by the equation

|Oé,t0; t>1 = uj(t,to)‘a,to;to>1.

Since the time evolution of the state vectors is governed
by the equation
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The interaction picture time evolution operator satisfies
thus the equation
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As the initial condition we have obviously
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Integration gives
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By iteration we end up with Dyson’s series
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Let us suppose again that we have solved the problem
Ho|n) = En|n)

completely. Let the initial state of the system be |i) at
the moment ¢t =ty = 0, i.e.

la, tg = 05t = 0)1 = [4).
At the moment ¢ this has evolved to the state

li,to = 0;t)r = U(t,0)[i)

Zln |ty (t,0)[i).

Here
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is the same as the superposition coefficient we used before.
From the relation binding the interaction and Schrodinger
picture state vectors we get
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so the time evolution operators of these pictures are
obtained with the help of the formula

Ur(t,to) = e Tot/MY(t, tg)eHoto/h

The matrix elements of the operator U; (¢, ty) can now be
calculated from the relation

(nftd(t, to)|i) = e Frt=Et) M (nud (¢, to) i)
We see that

e the matrix element (n|U;(t,to)]¢) is not quite the
transition amplitude (n|U(t, to)l7),

e the transition probabilities satisfy
[(nledr (¢, o) |9)]* = [(nltd(t, to)]) .

Note If the states |a’) and |b’) are not eigenstates of Hy
then

(VU1 (¢, to)|a")|* # [(V'|eA (2, to)|a”) .

In this case the matrix elements are evaluated by
expanding the states |a’) and |b’) in the base {|n)}
formed by the eigenstates of H.

Let us suppose now that at the moment ¢t = ¢y the system
is in the eigenstate |i) of Hy. This state vector can always
be multiplied by an arbitrary phase factor, so the
Schrodinger picture state vector |i,t0;t0)s can be chosen
as

li,to; to)s = e~ Fito/P|g).

Then in the interaction picture we have
listosto)r = ).
At the moment ¢ this has evolved to the state
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li,tost)r = Ur(t, to)|i

SO
en(t) = (nlUs (t,to)i),

as we already noted.

Now

1. substitute the Dyson series into this

2. expand the coefficient as a power series of the
perturbation

en(t) = (1) + D (t) + D (t) + -+,



3. equalize the terms c%k)

of the order k,

with the perturbation terms
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The probability for the transition from the state |é) to the
state |n) can be written as

Pr(i — n) = [ea () = 0 (1) + P (t) +--- .

Fermi’s golden rule
Consider the constant perturbation

V(t)z{%

switched on at the moment ¢t = 0. At the moment ¢ =0
let the system be in the pure state |i). Now

when ¢t < 0

(time independent) when ¢ > 0.
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The transition probability to the state |n) is thus
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is almost continuous because usually the F,, states form
almost a continuum. The transition probability is now
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When ¢ is large then |c,,(¢)|? # 0 only if
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If now At is the time the perturbation has been on then
transitions are possible only if

AtAFE =~ h.
Note If the energy is conserved exactly, i.e.
En = Ei7

then

S0P = 5 Va2

h
The transition probability is proportional to the square of
the on-time of the perturbation (and not linearly
proportional to the time).
In general we are interested in transitions in which the
initial state |i) is fixed but the final state |n) can be any

state satisfying the energy conservation rule

The total probability for such a transition is now
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Here p(F) is the density of states, i.e.

p(E)dE = the number of states between(E, E + dE).
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The transition probability is thus
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where |V,,;|2 is the average of the term |V},;|2.

Note The total transition probability depends linearly
on time t.

The transition rate w is defined to be the transition

probability per unit time. We end up with the Fermi

golden rule
d
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Quite often this is also written as
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but then one implicitely assumes that it will be integrated
in the expression [dE, p(Ep)wi—p - -

Second order corrections
In the second order we got
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so in the case of the potential

V(t) = 0, when ¢t <0
| V' (time independent) when ¢t > 0.
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Above
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e the term e*nit is same as in the coefficient 051 ), S0 it

contributes only if F, ~ E; when t — oo.

e if F,, in the term e'“nmt’ differs from E,, and at the
same time from FE; it oscillates rapidly and
contributes nothing.

So we can write
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In the second order the term V,,,,,V,,; can be thougth to
describe virtual transitions

i) — m) — [n).

Harmonic perturbations
Consider the potential

V(t) = Ve + Ve ™",

which is again assumed to be switched on at the moment
t = 0. When ¢ < 0, the system is supposed to be in the
state |¢). The first order term is now
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This is of the same form as in the case of our earlier step

potential, provided that we substitute

En - E1
h
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When t — oo, |cn )|2 is thus non zero only if
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Obviously, if the first term is important the second one
does not contribute and vice versa. The energy of a
quantum mechanical system is not conserved in these
transitions but the ”external” potential either gives
(absorption) or takes (stimulated emission) energy
to/from the system. Analogically to the constant
potential the transition rate will be

Wi—n =

Z%WMF(S(EH — B + hw).



