Energgy shifts and line widths

Evolution of the initial state
We consider the case where the initial and final states are
the same. We switch the interaction on slowly:

V(t) = e"V.

Here n — 0 at the end.
We suppose that in the far past, t = —oo, the system has
been in the state 7).
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Up to the lowest non vanishing order the transition
probability is
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so in the limit  — 0 we get the Fermi golden rule
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This is equivalent with our previous result.
Let now n =1i. We get
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Thus, up to the second order the coeflicient ¢; is
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For the logarithmic time derivative of the coefficient ¢; up
to the second order in the perturbation V we get
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where we have already set e — 1.
Note We cannot set in the denominator n = 0, because
the states F,, can form nearly a continuum in the vicinity
of Ei-
The logarithmic derivative is thus time independent, i.e.
of form ) _

G(t) i A,

The solution satisfying the initial condition ¢;(0) = 1 is
ci(t) = e iAit/h

Note A; is not necessarily real.
We interprete this so that the state |i) evolves gradually
like
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In the Schrodinger picture the latter contains also a phase
factor, or

efiAit/h|Z~> — efiAit/ﬁ*iEit/hlw.
Due to the perturbation the energy levels shift like

We expand now A; as the power series in the
perturbation:

A=AY AP 4.

Comparing with our previous expression

we see that in the first order we have
1
AV = v,

This is equivalent with the time independent perturbation
theory.



Because the energies E,, for almost a continuum we can  so I'; —or excluding the factor -2, the imaginary part of

in the second order term the energy shift— is the width of the decay line and the
5 real part of the energy shift what is usually called the
Z % energy shift.
mti B = E +ihn In the case of harmonic perturbations we can repeat the

same derivation provided that we substitute
replace the summation with the integration. To handle

the limit 7 — 0 we recall from the function theory that FE, —FE;— FE,, — FE; £hw.
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where p stands for the principal value integral. A
common shorthand notation for this is
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The right hand side of the latter equation is familiar from
the Fermi golden rule, so we can write
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The coefficient ¢;(t) can be written with the help of the
energy shift as

ci(t) = e~ /MRl /R Im(A)1]

We define
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Then
|Ci(t)|2 — e2Im(Ai)t/h — e—Fit/h.

Thus the quantity I'; tells us at which rate the state |7)
disappears. The quantity
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is thus the average life time of the state |i).
In the Schrodinger picture the time evolution is
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where the energy spectrum
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is the Fourier transform of the coefficient ¢;(t)e=#/",
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