Radiation and matter
We handle the interaction of radiation and matter
semiclassically:

e the radiation field classically,
e the matter quantum mechanically,

e OK, if there is large number of photons in the
volume ~ A3,

e in the case of the spontaneous emission we impose a
fictive field equivalent with the quantum theory.

The vector potential A of the classical radiation field can
always be chosen to satisfy the transverse condition:

V - A =0. The electric and magnetic field are obtained
from the vector potential as
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The energy flux —energy /unit area/unit time— is
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For a monochromatic plane wave we have
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where m and € are the directions of the propagation and
polarization of the plane wave. Due to the transverse
condition

V-A=0
we have €L n. The energy flux is then
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A particle in the radiation field has the mechanical
momentum
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since due to the transvers condition
p-A=A p.

The Hamiltonian of an electron in the field is now
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when we drop off the term |A|?. Now
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Earlier we saw that in the case of the harmonic potential
V(t) = Vel + Vieivt

transitions are possible if

Wni+w=x0 or FE,x~F —hw
Wni —wx0 or FE,~FE +hv,
or
e™! «— stimulated emission
e~ « absorption.
Absorption

In the case of the radiation field,
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is the matrix element corresponding to the absorption.
The transition rate is then
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‘We should note that

e if the final states |n) form a continuum we integrate
weighing with the state density p(E,,).

o if the final states |n) are discrete they, nevertheless,
are not ground states so that their energy cannot be
extremely accurate.

e collisions can broaden the energy levels.

e the incoming radiation is not usually completely
monochromatic.

So we write the §-function as

. g 1
o —em) =iy (50) o]

We define the absorption cross section:

(energy/unit time) absorbed by the atom (i — n)

Oabs =
energy flux of the radiation field

Since in every absorption process the atom absorbs the
energy hw, we have
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Here e?/ic is the fine structure constant o ~ 1/137.

In order the absorption to be possible the energy
quantum hAw of the radiation must be of the order of the
energy level spacing:

_— Ze? Ze?

(aO/Z) - Ratom’
when Z is the atomic number. Now
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We expand the exponential function in the expression for
the cross section as the power series
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so it is usually enough if we keep only the term 1. We
have then the so called electric dipole approximation.
Thus in the electric dipole approximation
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We choose
€|z and n || 2.
Let the states |n) be the solutions of the problem
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Since x is a superposition of the spherical tensors Till) we
get the selection rules
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If we had
e & || 4, the same selection rules were valid.
e & || 2, we should have m’ = m, because z = To(l).

In the dipole approximation the absorption cross section
is
Tabs = 412 awn;|(n]z|i) |20 (w — why).

Integration gives
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The oscillator strength is defined as follows:
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One can show that it satisfies so called
Thomas-Reiche-Kuhn’s sum rule:
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We see that
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This is known as the oscillator sum rule of classical
electrodynamics.

Photoelectric effect

The initial state |¢) is atomic but the final state |n) is in
the continuum formed by the plane waves |ky). In the
absorption cross section we have now to weigh the
function §(w,; —w) with the final state density p(E,,):
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Under the periodic boundary conditions in the L-sided
cube we have
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When L — oo, the variable n, defined via the relation
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can be considered continuous. Then the volume in the
solid angle df2 bounded by the surfaces n’ = n and

n' =n +dn is n? dn dQ.

The final state energy is
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The number of states with the wave vector ky in the
interval (E, E 4+ dF) and in the solid angle is
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The differential cross section is now
do A%ah
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Example Emission of an electron from the innermost
shell.

The wave function of the initial state is approximately
like the one of the hydrogen ground state provided we
substitute ag — ao/Z:
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The matrix element is now
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Integrating by parts and noting that due to the
transversal condition € - n = 0 we have
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Thus the matrix element is proportional to the Fourier
transform of the atomic wave function with the respect of

the variable
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As the final result we can write the differential cross
section as
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If now € | & and 7 || 2, the differential cross section can
be written using the polar angle 0, the azimuthal angle ¢
and the relations
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