
Radiation and matter
We handle the interaction of radiation and matter
semiclassically:

• the radiation field classically,

• the matter quantum mechanically,

• OK, if there is large number of photons in the
volume ≈ λ3,

• in the case of the spontaneous emission we impose a
fictive field equivalent with the quantum theory.

The vector potential A of the classical radiation field can
always be chosen to satisfy the transverse condition:
∇ ·A = 0. The electric and magnetic field are obtained
from the vector potential as
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For a monochromatic plane wave we have
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where n̂ and ε̂ are the directions of the propagation and
polarization of the plane wave. Due to the transverse
condition
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we have ε̂⊥n̂. The energy flux is then
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A particle in the radiation field has the mechanical
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since due to the transvers condition

p ·A = A · p.

The Hamiltonian of an electron in the field is now
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when we drop off the term |A|2. Now
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Earlier we saw that in the case of the harmonic potential

V (t) = Veiωt + V†e−iωt

transitions are possible if

ωni + ω ≈ 0 or En ≈ Ei − h̄ω
ωni − ω ≈ 0 or En ≈ Ei + h̄ω,

or

eiωt ←→ stimulated emission
e−iωt ←→ absorption.

Absorption

In the case of the radiation field,
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is the matrix element corresponding to the absorption.
The transition rate is then
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We should note that

• if the final states |n〉 form a continuum we integrate
weighing with the state density ρ(En).

• if the final states |n〉 are discrete they, nevertheless,
are not ground states so that their energy cannot be
extremely accurate.

• collisions can broaden the energy levels.

• the incoming radiation is not usually completely
monochromatic.

So we write the δ-function as
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We define the absorption cross section:

σabs =
(energy/unit time) absorbed by the atom (i → n)

energy flux of the radiation field
.

Since in every absorption process the atom absorbs the
energy h̄ω, we have
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Here e2/h̄c is the fine structure constant α ≈ 1/137.
In order the absorption to be possible the energy
quantum h̄ω of the radiation must be of the order of the
energy level spacing:
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,

when Z is the atomic number. Now
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We expand the exponential function in the expression for
the cross section as the power series
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so it is usually enough if we keep only the term 1. We
have then the so called electric dipole approximation.
Thus in the electric dipole approximation

〈n|ei(ω/c)n̂·xε̂ · p|i〉 −→ ε̂ · 〈n|p|i〉.

We choose
ε̂ ‖ x̂ and n̂ ‖ ẑ.

Let the states |n〉 be the solutions of the problem
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Since x is a superposition of the spherical tensors T (1)
±1 we

get the selection rules

m′ −m = ±1
|j′ − j| = 0, 1.

If we had

• ε̂ ‖ ŷ, the same selection rules were valid.

• ε̂ ‖ ẑ, we should have m′ = m, because z = T
(1)
0 .

In the dipole approximation the absorption cross section
is

σabs = 4π2αωni|〈n|x|i〉|2δ(ω − ωni).

Integration gives∫
σabs(ω) dω =

∑
n

4π2αωni|〈n|x|i〉|2.

The oscillator strength is defined as follows:
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This is known as the oscillator sum rule of classical
electrodynamics.

Photoelectric effect

The initial state |i〉 is atomic but the final state |n〉 is in
the continuum formed by the plane waves |kf 〉. In the
absorption cross section we have now to weigh the
function δ(ωni − ω) with the final state density ρ(En):
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Under the periodic boundary conditions in the L-sided
cube we have

〈x′|kf 〉 =
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When L→∞, the variable n, defined via the relation
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can be considered continuous. Then the volume in the
solid angle dΩ bounded by the surfaces n′ = n and
n′ = n+ dn is n2 dn dΩ.
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The number of states with the wave vector kf in the
interval (E,E + dE) and in the solid angle is
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The differential cross section is now
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Example Emission of an electron from the innermost
shell.
The wave function of the initial state is approximately
like the one of the hydrogen ground state provided we
substitute a0 −→ a0/Z:
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The matrix element is now
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Integrating by parts and noting that due to the
transversal condition ε̂ · n̂ = 0 we have

ε̂ ·
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Thus the matrix element is proportional to the Fourier
transform of the atomic wave function with the respect of
the variable

q = kf −
(ω
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)
n̂.

As the final result we can write the differential cross
section as
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If now ε̂ ‖ x̂ and n̂ ‖ ẑ, the differential cross section can
be written using the polar angle θ, the azimuthal angle φ
and the relations

kf = kf (sin θ cosφ, sin θ sinφ, cos θ)
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