
Relativistic quantum mechanics

Classical fields
We suppose that the Lagrange function

L = L(qi, q̇i) = T − V

of classical mechanics does not depend explicitely on
time. From the Hamilton variation principle

δ

∫ t2

t1

L(qi, q̇i) dt = 0, δqi(t)
∣∣
t=t1,2

= 0

one can derive the equations of motion

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0.

The Hamiltonian function of the Hamiltonian mechanics
is

H =
∑

i

piq̇i − L,

where the canonically conjugated momentum pi of qi is

pi =
∂L

∂q̇i
.

The equations of motion are now

q̇i =
∂H

∂pi

ṗi = −∂H

∂qi
.

Many body system
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We consider N identical particles coupled to eachother by
identical parallel springs. The Lagrangian of the system is

L = T − V

=
1
2

N∑
i

[
mη̇2

i − k(ηi+1 − ηi)2
]
,

when ηi is the deviation of the particle i from its
equilibrium position ia.
We write this as

L =
1
2

N∑
i

[
mη̇2

i − k(ηi+1 − ηi)2
]

=
N∑
i

a
1
2

[
m

a
η̇2

i − ka

(
ηi+1 − ηi

a

)2
]

=
N∑
i

aLi.

Here Li is the linear Lagrangian density.
We go to continuum by substituting the limits

a → dx
m

a
→ µ = linear mass density

ηi+1 − ηi

a
→ ∂η

∂x
ka → Y = Young’s modulus.

Now
L =

∫
L dx,

where

L =
1
2

[
µη̇2 − Y

(
∂η

∂x

)2
]

.

In the continuous case the Hamiltonian variation
principle takes the form

δ

∫ t2

t1

Ldt

= δ

∫ t2

t1

dt

∫
dxL

(
η, η̇,

∂η

∂x

)
=

∫
dt

∫
dx

{
∂L
∂η

δη +
∂L

∂(∂η/∂x)
δ

(
∂η

∂x

)
+

∂L
∂(∂η/∂t)

δ

(
∂η

∂t

)}
=

∫
dt

∫
dx

{
∂L
∂η

+
∂L

∂(∂η/∂x)
∂

∂x
(δη)

+
∂L

∂(∂η/∂t)
∂

∂t
(δη)

}
=

∫
dt

∫
dx

{
∂L
∂η

− ∂

∂x

(
∂L

∂(∂η/∂x)

)
− ∂

∂t

(
∂L

∂(∂η/∂t)

)}
δη.

To get the variation to vanish for all δη one must satisfy
the Euler-Lagrange equation

∂

∂x

∂L
∂(∂η/∂x)

+
∂

∂t

∂L
∂(∂η/∂t)

− ∂L
∂η

= 0.

When

L =
1
2

[
µη̇2 − Y

(
∂η

∂x

)2
]

,

then

∂L
∂η

= 0

∂

∂x

∂L
∂(∂η/∂x)

= −Y
∂

∂x

∂η

∂x
= −Y

∂2η

∂x2

∂

∂t

∂L
∂(∂η/∂t)

= µ
∂2η

∂t2
.

Substituting into the Euler-Lagrange equation we get

Y
∂2η

∂x2 − µ
∂2η

∂t2
= 0,



which describes a wave progating in one dimension with
the velocity

√
Y/µ.

We define the canonically conjugated momentum

π =
∂L
∂η̇

and the Hamiltonian density

H = η̇π − L.

Now
π = µη̇,

so

H = µη̇2 − 1
2

[
µη̇2 − Y

(
∂η

∂x

)2
]

=
1
2
µη̇2 +

1
2
Y

(
∂η

∂x

)2

.

The Lagrangian formalism generalizes easily to three
dimensions. The Euler-Lagrange equation takes then the
form

3∑
k=1

∂

∂xk

∂L
∂(∂φ/∂xk)

+
∂

∂t

∂L
∂(∂φ/∂t)

− ∂L
∂φ

= 0.

Covariant formulation

We employ the metrics where the components of a
four-vector bµ are

bµ = (b1, b2, b3, b4) = (b, ib0).

In particular the coordinate four-vector is

xµ = (x1, x2, x3, x4) = (x, ict).

Under Lorentz transformations the coordinate vector
transforms according to the equation

x′µ = aµνxν .

The coefficients of the Lorentz transformation satisfy the
orthogonality condition

aµνaµλ = δνλ, (a−1)µν = aνµ,

so that
xµ = (a−1)µνx′ν = aνµx′ν .

We define the four-vector so that under Lorentz
transformations it transforms like xµ.
Now

∂

∂x′µ
=

∂xν

∂x′µ

∂

∂xν
= aµν

∂

∂xν
,

so the four-gradient ∂/∂xµ is a four-vector.
The scalar product of the four-vectors b and c,

b · c = bµcµ =
3∑

j=1

bjcj + b4c4

= b · c− b0c0,

is invariant under Lorentz transformations.
Using the four-vector notation the Euler-Lagrange
equation can be written into the compact form

∂

∂xµ

[
∂L

∂(∂φ/∂xµ)

]
− ∂L

∂φ
= 0.

We see that the field equation derived from the
Lagrangian density L is covariant provided that the
Lagrangian density L itself is relativistically scalar
(invariant under Lorentz transformations).


