Relativistic quantum mechanics

Classical fields

We suppose that the Lagrange function

$$L = L(q_i, \dot{q}_i) = T - V$$

of classical mechanics does not depend explicitly on time. From the Hamilton variation principle

$$\delta \int_{t_1}^{t_2} L(q_i, \dot{q}_i) dt = 0, \quad \delta q_i(t) \big|_{t=t_{1,2}} = 0$$

one can derive the equations of motion

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0.$$

The Hamiltonian function of the Hamiltonian mechanics is

$$H = \sum_{i} p_i \dot{q}_i - L,$$

where the canonically conjugated momentum p_i of q_i is

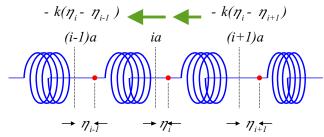
$$p_i = \frac{\partial L}{\partial \dot{q}_i}.$$

The equations of motion are now

$$\dot{q}_{i} = \frac{\partial H}{\partial p_{i}}$$

$$\dot{p}_{i} = -\frac{\partial H}{\partial q_{i}}.$$

Many body system



We consider N identical particles coupled to each other by identical parallel springs. The Lagrangian of the system is

$$L = T - V = \frac{1}{2} \sum_{i}^{N} \left[m \dot{\eta}_{i}^{2} - k (\eta_{i+1} - \eta_{i})^{2} \right],$$

when η_i is the deviation of the particle *i* from its equilibrium position ia.

We write this as

$$L = \frac{1}{2} \sum_{i}^{N} \left[m \dot{\eta}_{i}^{2} - k(\eta_{i+1} - \eta_{i})^{2} \right]$$

$$= \sum_{i}^{N} a \frac{1}{2} \left[\frac{m}{a} \dot{\eta}_{i}^{2} - ka \left(\frac{\eta_{i+1} - \eta_{i}}{a} \right)^{2} \right]$$

$$= \sum_{i}^{N} a \mathcal{L}_{i}.$$

Here \mathcal{L}_i is the linear Lagrangian density. We go to continuum by substituting the limits

$$\begin{array}{ccc} a & \to & dx \\ \frac{m}{a} & \to & \mu = \text{linear mass density} \\ \\ \frac{\eta_{i+1} - \eta_i}{a} & \to & \frac{\partial \eta}{\partial x} \\ ka & \to & Y = \text{Young's modulus.} \end{array}$$

Now

$$L = \int \mathcal{L} \, dx,$$

where

$$\mathcal{L} = \frac{1}{2} \left[\mu \dot{\eta}^2 - Y \left(\frac{\partial \eta}{\partial x} \right)^2 \right].$$

In the continuous case the Hamiltonian variation principle takes the form

$$\delta \int_{t_{1}}^{t_{2}} L \, dt$$

$$= \delta \int_{t_{1}}^{t_{2}} dt \int dx \, \mathcal{L} \left(\eta, \dot{\eta}, \frac{\partial \eta}{\partial x} \right)$$

$$= \int dt \int dx \, \left\{ \frac{\partial \mathcal{L}}{\partial \eta} \delta \eta + \frac{\partial \mathcal{L}}{\partial (\partial \eta / \partial x)} \delta \left(\frac{\partial \eta}{\partial x} \right) \right\}$$

$$+ \frac{\partial \mathcal{L}}{\partial (\partial \eta / \partial t)} \delta \left(\frac{\partial \eta}{\partial t} \right)$$

$$= \int dt \int dx \, \left\{ \frac{\partial \mathcal{L}}{\partial \eta} + \frac{\partial \mathcal{L}}{\partial (\partial \eta / \partial x)} \frac{\partial}{\partial x} (\delta \eta) \right\}$$

$$+ \frac{\partial \mathcal{L}}{\partial (\partial \eta / \partial t)} \frac{\partial}{\partial t} (\delta \eta)$$

$$= \int dt \int dx \, \left\{ \frac{\partial \mathcal{L}}{\partial \eta} - \frac{\partial}{\partial x} \left(\frac{\partial \mathcal{L}}{\partial (\partial \eta / \partial x)} \right) \right\}$$

$$- \frac{\partial}{\partial t} \left(\frac{\partial \mathcal{L}}{\partial (\partial \eta / \partial t)} \right)$$

$$\delta \eta.$$

To get the variation to vanish for all $\delta\eta$ one must satisfy the Euler-Lagrange equation

$$\frac{\partial}{\partial x}\frac{\partial \mathcal{L}}{\partial (\partial \eta/\partial x)} + \frac{\partial}{\partial t}\frac{\partial \mathcal{L}}{\partial (\partial \eta/\partial t)} - \frac{\partial \mathcal{L}}{\partial \eta} = 0.$$

When

$$\mathcal{L} = \frac{1}{2} \left[\mu \dot{\eta}^2 - Y \left(\frac{\partial \eta}{\partial x} \right)^2 \right],$$

then

$$\frac{\partial \mathcal{L}}{\partial \eta} = 0$$

$$\frac{\partial}{\partial x} \frac{\partial \mathcal{L}}{\partial (\partial \eta / \partial x)} = -Y \frac{\partial}{\partial x} \frac{\partial \eta}{\partial x} = -Y \frac{\partial^2 \eta}{\partial x^2}$$

$$\frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial (\partial \eta / \partial t)} = \mu \frac{\partial^2 \eta}{\partial t^2}.$$

Substituting into the Euler-Lagrange equation we get

$$Y\frac{\partial^2 \eta}{\partial x^2} - \mu \frac{\partial^2 \eta}{\partial t^2} = 0,$$

which describes a wave progating in one dimension with the velocity $\sqrt{Y/\mu}$.

We define the canonically conjugated momentum

$$\pi = \frac{\partial \mathcal{L}}{\partial \dot{\eta}}$$

and the Hamiltonian density

$$\mathcal{H} = \dot{\eta}\pi - \mathcal{L}.$$

Now

$$\pi = \mu \dot{\eta}$$

SO

$$\mathcal{H} = \mu \dot{\eta}^2 - \frac{1}{2} \left[\mu \dot{\eta}^2 - Y \left(\frac{\partial \eta}{\partial x} \right)^2 \right]$$
$$= \frac{1}{2} \mu \dot{\eta}^2 + \frac{1}{2} Y \left(\frac{\partial \eta}{\partial x} \right)^2.$$

The Lagrangian formalism generalizes easily to three dimensions. The Euler-Lagrange equation takes then the form

$$\sum_{k=1}^{3} \frac{\partial}{\partial x_{k}} \frac{\partial \mathcal{L}}{\partial (\partial \phi / \partial x_{k})} + \frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial (\partial \phi / \partial t)} - \frac{\partial \mathcal{L}}{\partial \phi} = 0.$$

Covariant formulation

We employ the metrics where the components of a four-vector b_{μ} are

$$b_{\mu} = (b_1, b_2, b_3, b_4) = (\mathbf{b}, ib_0).$$

In particular the coordinate four-vector is

$$x_{\mu} = (x_1, x_2, x_3, x_4) = (\boldsymbol{x}, ict).$$

Under Lorentz transformations the coordinate vector transforms according to the equation

$$x'_{\mu} = a_{\mu\nu}x_{\nu}.$$

The coefficients of the Lorentz transformation satisfy the orthogonality condition

$$a_{\mu\nu}a_{\mu\lambda} = \delta_{\nu\lambda}, \quad (a^{-1})_{\mu\nu} = a_{\nu\mu},$$

so that

$$x_{\mu} = (a^{-1})_{\mu\nu} x_{\nu}' = a_{\nu\mu} x_{\nu}'.$$

We define the four-vector so that under Lorentz transformations it transforms like x_{μ} .

Now

$$\frac{\partial}{\partial x'_{\mu}} = \frac{\partial x_{\nu}}{\partial x'_{\mu}} \frac{\partial}{\partial x_{\nu}} = a_{\mu\nu} \frac{\partial}{\partial x_{\nu}},$$

so the four-gradient $\partial/\partial x_{\mu}$ is a four-vector. The scalar product of the four-vectors b and c,

$$b \cdot c = b_{\mu}c_{\mu} = \sum_{j=1}^{3} b_{j}c_{j} + b_{4}c_{4}$$
$$= b \cdot c - b_{0}c_{0},$$

is invariant under Lorentz transformations. Using the four-vector notation the Euler-Lagrange equation can be written into the compact form

$$\frac{\partial}{\partial x_{\mu}} \left[\frac{\partial \mathcal{L}}{\partial (\partial \phi / \partial x_{\mu})} \right] - \frac{\partial \mathcal{L}}{\partial \phi} = 0.$$

We see that the field equation derived from the Lagrangian density \mathcal{L} is covariant provided that the Lagrangian density \mathcal{L} itself is relativistically scalar (invariant under Lorentz transformations).