Relativistic quantum mechanics

Classical fields

We suppose that the Lagrange function
L = L(gi, ¢:)

of classical mechanics does not depend explicitely on
time. From the Hamilton variation principle
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one can derive the equations of motion
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The Hamiltonian function of the Hamiltonian mechanics
is
H=> pigi— L,
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where the canonically conjugated momentum p; of ¢; is
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The equations of motion are now
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Many body system
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We consider N identical particles coupled to eachother by
identical parallel springs. The Lagrangian of the system is

L = T-V
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when 7); is the deviation of the particle ¢ from its
equilibrium position a.
We write this as
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Here £; is the linear Lagrangian density.
We go to continuum by substituting the limits
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In the continuous case the Hamiltonian variation
principle takes the form
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To get the variation to vanish for all jn one must satisfy
the Euler-Lagrange equation

where
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Substituting into the Euler-Lagrange equation we get
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which describes a wave progating in one dimension with

the velocity /Y/p.

We define the canonically conjugated momentum

o
= o
and the Hamiltonian density
H=nm—L.
Now
T = py,
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The Lagrangian formalism generalizes easily to three

dimensions. The Euler-Lagrange equation takes then the
form
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Covariant formulation
We employ the metrics where the components of a
four-vector b,, are

b/t = (b17b27b37b4) = (b7 Zbo)

In particular the coordinate four-vector is

Ly = (x17l'27173,(134) = (m,'LCt)

Under Lorentz transformations the coordinate vector
transforms according to the equation

/
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The coefficients of the Lorentz transformation satisfy the
orthogonality condition
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so that
Ty = (a_l)wxfj = Ayud,,-
We define the four-vector so that under Lorentz
transformations it transforms like z,,.
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so the four-gradient 0/0x,, is a four-vector.
The scalar product of the four-vectors b and c,
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is invariant under Lorentz transformations.

Using the four-vector notation the Euler-Lagrange

equation can be written into the compact form
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We see that the field equation derived from the

Lagrangian density £ is covariant provided that the

Lagrangian density L itself is relativistically scalar
(invariant under Lorentz transformations).



