
Photons
We consider a radiation field whose vector potential A
satisfies the transversality condition

∇ ·A = 0.

Because the electric and magnetic fields

E = −1
c

∂

∂t
A

B = ∇×A

satisfy the free space Maxwell equations

∇ ·E = 0

∇×E = −∂B

∂t
∇ ·B = 0

∇×B =
1
c

∂E

∂t
,

the vector potential satisfies the wave equation

∇2A− 1
c2

∂2A

∂t2
= 0.

We write the vector potential at the moment t = 0 as a
superposition of the periodically normalized plane waves
in an L-sided cube,

uk,α(x) = ε̂(α)eik·x,

like:

A(x, t)|t=0 =
1√
V

∑
k

∑
α=1,2

(ck,α(0)uk,α(x)

+c∗k,α
(0)u∗k,α

(x)).

Here V = L3 and ε̂(α), α = 1, 2 are real polarization
vectors.
Due to the transversality condition we have

ε̂(α) · k = 0,

so the polarization can chosen so that the vectors
(ε̂(1), ε̂(2),k/|k|) form a righthanded rectangular
coordinate system. The Fourier components uk,α satisfy
the orthogonality conditions

1
V

∫
d3xuk,α · u

∗
k′

,α′ = δkk′δαα′ .

Due to the periodicity conditions the wave vectors can
take the values

kx, ky, kz = 2nπ/L, n = ±1,±2, . . . .

At the moment t 6= 0 the vector potential is obtained
simply by setting

ck,α(t) = ck,α(0)e−iωt

c∗k,α
(t) = c∗k,α

(0)eiωt,

where
ω = |k|c.

Now

A(x, t)

=
1√
V

∑
k

∑
α

(ck,α(t)ε̂(α)eik·x + c∗k,α
(t)ε̂(α)e−ik·x)

=
1√
V

∑
k

∑
α

(ck,α(0)ε̂(α)eik·x + c∗k,α
(0)ε̂(α)e−ik·x),

where we have employed the four-vector notation

k · x = k · x− ωt = k · x− |k|ct.

The Hamiltonian function of the classical radiation field is

H =
1
2

∫
(|B|2 + |E|2) d3x

=
1
2

∫ [
|∇ ×A|2 + |(1/c)(∂A/∂t)|2

]
d3x.

A straightforward calculation shows that

H =
∑
k

∑
α

2(ω/c)2c∗k,α
ck,α.

Because the coefficients

ck,α(t) = ck,α(0)e−iωt

satisfy the equation of motion

c̈k,α = −ω2ck,α,

it would look like the classical radiation field were
composed of independent harmonic oscillators.
We define the variables

Qk,α =
1
c
(ck,α + c∗k,α

)

Pk,α = − iω

c
(ck,α − c∗k,α

).

With the help of these the Hamiltonian function can be
written as

H =
∑
k

∑
α

1
2
(P 2

k,α
+ ω2Q2

k,α
).

Since

∂H

∂Qk,α

= −Ṗk,α

∂H

∂Pk,α

= +Q̇k,α,

the variables Pk,α and Qk,α are canonically conjugated
and the Hamiltonian function the sum of the total
energies of the corresponding harmonic oscillators.
Thus the classical radiation field can be thought to be a
collection of independent harmonic oscillators. There



• every oscillator is characterized by the wave vector k
and the polarization ε̂(α),

• the dynamic variables of every oscillator are
combinations of Fourier coefficients.

We quantize these oscillators by postulating that Pk,α
and Qk,α are not any more pure numbers but operators
which satisfy the canonical commutation rules

[Qk,α, Pk′
,α′ ] = ih̄δkk′δαα′

[Qk,α, Qk′
,α′ ] = 0

[Pk,α, Pk′
,α′ ] = 0.

We define dimensionless combinations ak,α and a†
k,α

of
the operators Pk,α and Qk,α as

ak,α =
1√
2h̄ω

(ωQk,α + iPk,α)

a†
k,α

=
1√
2h̄ω

(ωQk,α − iPk,α).

It is easy to see that they satisfy the commutation
relations

[ak,α, a†
k′

,α′ ] = δkk′δαα′

[ak,α, ak′
,α′ ] = [a†

k,α
, a†

k′
,α′ ] = 0.

Note In these relations the operators must be evaluated
at the same moment, i.e. [ak,α, a†

k′
,α′ ] stands in fact for

the commutator [ak,α(t), a†
k′

,α′(t)].
We further define the Hermitean operator

Nk,α = a†
k,α

ak,α.

It is easy to see that

[ak,α, Nk′
,α′ ] = δkk′δαα′ak,α

[a†
k,α

, Nk′
,α′ ] = −δkk′δαα′a†

k,α
.

Due to the Hermiticity the eigenvalues nk,α
of the

operator Nk,α are real and the eigenvectors

Nk,α|nk,α〉 = nk,α |nk,α〉

form an orthonormal complete basis.
With the help of the commutation rule

[a†
k,α

, Nk′
,α′ ] = −δkk′δαα′a†

k,α

we see that

Nk,αa†
k,α

|nk,α〉 = (a†
k,α

Nk,α + a†
k,α

)|nk,α〉

= (nk,α + 1)a†
k,α

|nk,α〉.

Similarly we can show that

Nk,αak,α|nk,α〉 = (nk,α − 1)ak,α|nk,α〉.

Thus we can write

a†
k,α

|nk,α〉 = c+|nk,α + 1〉

ak,α|nk,α〉 = c−|nk,α − 1〉.

Because the states |nk,α〉 are normalized we can calculate
the coefficients as

|c+|2 = |c+|2〈nk,α + 1|nk,α + 1〉

= 〈nk,α |ak,αa†
k,α

|nk,α〉

= 〈nk,α |Nk,α + [ak,α, a†
k,α

]|nk,α〉
= nk,α + 1,

|c−|2 = 〈nk,α |a
†
k,α

ak,α|nk,α〉 = nk,α .

We choose the phase of the coefficients so that at the
moment t = 0 we have

a†
k,α

|nk,α〉 =
√

nk,α + 1|nk,α + 1〉

ak,α|nk,α〉 =
√

nk,α |nk,α − 1〉.

Because

nk,α = 〈nk,α |Nk,α|nk,α〉 = 〈nk,α |a
†
k,α

ak,α|nk,α〉

and because the norm of a vectors is always non-negative
we must have

nk,α ≥ 0.

From this we can deduce that the only possible
eigenvalues are

nk,α = 0, 1, 2, . . . .

We interprete

• the state |nk,α〉 to contain exactly nk,α photons,
each of which is characterized by a wave vector k and
a polarization ε̂(α).

• the operator a†
k,α

to create a photon with the wave

vector k and the polarization ε̂(α).

• the operator ak,α to destroy a photon with the wave

vector k and the polarizartion ε̂(α).

• the operator Nk,α to count the number of photons

with the wave vector k and the polarization ε̂(α) in
the state

The state composed of various kind of photons is a direct
product of individual vectors |nki,αi

〉:

|nk1,α1
, nk2,α2

, . . . , nki,αi
, . . .〉

= |nk1,α1
〉 ⊗ |nk2,α2

〉 ⊗ · · · ⊗ |nki,αi
〉 ⊗ · · · .

The vector |0〉 stands for the state that has no kind of
photons, i.e.

|0〉 = |0k1,α1
〉 ⊗ |0k2,α2

〉 ⊗ · · · .



Application of any operator ak,α onto this results always
zero. We say that |0〉 represents the vacuum.
It is easy to see that a general normalized photon state
can be constructed applying operations a†

k,α

consecutively:

|nk1,α1
, nk2,α2

, . . .〉 =
∏

ki,αi

(a†
ki,αi

)
nki,αi√

nki,αi
!

|0〉.

Note Since the operators a†
k,α

and a†
k′

,α′ commute the
order of operators does not matter. The many photon
states are symmetric with respect to the exchange of
photons. We say that the photons obey the Bose-Einstein
statistics or that they are bosons.
Since the numbers nk,α tell us the number of photons of
type (k, α) in the volume under consideration we call
them the occupation numbers of the state.
Correspondingly the space spanned by the state vectors is
called the occupation number space.
In the quantum theory the Fourier coefficients of a
classical radiation field must be replaced by the
corresponding non-commuting creation and annihilation
operators. Substituting

ck,α 7→ c
√

h̄/2ω ak,α(t)

c∗k,α
7→ c

√
h̄/2ω a†

k,α
(t)

we get

A(x, t) =
1√
V

∑
k,α

c

√
h̄

2ω

[
ak,α(t)ε̂(α)eik·x

+a†
k,α

(t)ε̂(α)e−ik·x
]
.

Note Here A is an operator defined at every point of the
space whereas A of the classical theory is a three
component field defined at every point. The variables x
and t are both in classical and quantum mechanical cases
variables parametrizing the fields. Fields like the operator
A are called field operators or quantized fields.
Also in the quantum theory the Hamiltonian is of the
form

H =
1
2

∫
(B ·B + E ·E) d3x.

Substituting the field operator A into the equations

E = −1
c

∂

∂t
A

B = ∇×A

and noting that this time the Fourier coefficients do not
commute we get

H =
1
2

∑
k

∑
α

h̄ω(a†
k,α

ak,α + ak,αa†
k,α

)

=
∑
k

∑
α

(Nk,α +
1
2
)h̄ω,

where
ω = |k|c.

When we choose the energy scale so that

H|0〉 = 0,

the Hamiltonian takes the form

H =
∑
k

∑
α

h̄ωNk,α.

When it acts on a many photon state the result is

H|nk1,α1
, nk2,α2

, . . .〉

=
∑

i

nki,αi
h̄ωi|nk1,α1

, nk2,α2
, . . .〉.

The quantum mechanical momentum operator is exactly
of the same form as the classical function (the Poynting
vector):

P =
1
c

∫
(E ×B) d3x

=
∑
k

∑
α

1
2
h̄k(a†

k,α
ak,α + ak,αa†

k,α
)

=
∑
k

∑
α

h̄k(Nk,α +
1
2
).

Since here the summation goes over all wave vectors the
term associated with the factor 1/2 will not appear in the
final result the terms h̄k and −h̄k cancelling each other.
For the momentum operator we get thus

P =
∑
k

∑
α

h̄kNk,α.

For one photon states we have

Ha†
k,α

|0〉 = h̄ωa†
k,α

|0〉

P a†
k,α

|0〉 = h̄ka†
k,α

|0〉,

so

h̄ω = h̄|k|c = photon energy
h̄k = photon momentum.

The photon mass will be

(mass)2 =
1
c4 (E2 − |p|2c2)

=
1
c4 [(h̄ω)2 − (h̄|k|c)2]

= 0.

The photon state is also characterized by its polarization
ε̂(α). Since ε̂(α) transforms under rotations like a vector
the photon is associated with one unit of angular
momentum, i.e. the spin angular momentum of the



photon is one. We define the circularly polarized
combinations

ε̂(±) = ∓ 1√
2
(ε̂(1) ± iε̂(2)).

We rotate these vectors by an infinitesimal angle δφ
around the progation direction k. Their changes are

δε̂(±) = ∓ δφ√
2
(ε̂(2) ∓ iε̂(1))

= ∓iδφ ε̂(±).

We select the propagation direction k as the quantization
axis and compare this expression with the transformation
properties of angular momentum eigenstates

|jm〉R =
(

1− i

h̄
Jzδφ

)
|jm〉 = (1− im δφ)|jm〉.

We see that

• the spin components of the polarizations ε̂(±) are
m = ±1.

• the state m = 0 is missing due to the transversality
condition.

• our original linear polarization states are 50/50
mixtures of m = 1 and m = −1 states.

Hence the photon spin is always either parallel or
antiparallel to the direction of the propagation.
The operators ak,α and a†

k,α
are time dependent and so

they satisfy the Heisenberg equations of motion

ȧk,α =
i

h̄
[H, ak,α]

=
i

h̄

∑
k′

∑
α′

[h̄ω′Nk′
,α′ , ak,α]

= −iωak,α

like also
ȧ†
k,α

= iωa†
k,α

.

These equations have solutions

ak,α = ak,α(0)e−iωt

a†
k,α

= a†
k,α

(0)eiωt.

The final form of the field operator is then

A(x, t) =
1√
V

∑
k,α

c

√
h̄

2ω

[
ak,α(0)ε̂(α)eik·x−iωt

+ a†
k,α

(0)ε̂(α)e−ik·x+iωt
]
.

We should note that

• the operator A is Hermitean.

• x and t in the expression for the field operator A are
not quantum mechanical variables but simply
parameters which the operator A depends on. For
example, it is not allowed to interprete the variables
x and t as the space-time coordinates of a photon.

• the quantized field A operates at every point (x, t) of
the space where it with a certain probability creates
and annihilates excitation states called photons.
Thus photons can be interpreted as the quantum
mechanical excitations of the radiation field.

We consider photon emission and and absorption of non
relativistic atomic electrons. The relevant interaction
Hamiltonian is of the form

Hint =
∑

i

[
− e

mec
A(xi, t) · pi

+
e2

2m2
ec

2 A(xi, t) ·A(xi, t)
]

,

where the transversality condition is taken into account
by replacing the operator pi ·A with the operator A · pi.
The summation goes over all electrons participating in
the process. The symbols xi stand for their position
coordinates.
Note If we had to consider the interaction of spin and
radiation we should also include the term

H
(spin)
int = −

∑
i

eh̄

2mec
σi · [∇×A(x, t)]|x=xi

.

This time the Hamiltonian operator Hint operates not
only on the atomic states but also on the photon states.
In the quantum theory of radiation

• the vector describing the initial state |i〉 is the direct
product of an atomic state A and a (many) photon
state characterized by the occupation numbers nk,α

:

|i〉 = |A〉 ⊗ |nk,α〉 = |A;nk,α〉.

• the vector describing the final state |f〉 is the direct
product of an atomic state B and a (many) photon
state characterized by the occupation numbers nk′

,α′ :

|f〉 = |A〉 ⊗ |nk′
,α′〉 = |A;nk′

,α′〉.

Absorption

Now

|i〉 = |A;nk,α
〉

|f〉 = |B;nk,α − 1〉.

In the first order perturbation theory the amplitude of
the process

|i〉 −→ |f〉

is the matrix element of the interaction operator HI

between the states |i〉 and |f〉. Up to this order



• only ak,α leads to a nonzero matrix element,
eventhough the field operator A is a linear
superposition of creation and annihilation operators
a†
k,α

and ak,α, respectively.

• the term A ·A is out of the question in this process
because it either changes the number of photons by
two or does not change it at all.

The first order transition matrix element is now

〈B;nk,α − 1|Hint|A;nk,α〉

= − e

mec
〈B;nk,α − 1|

∑
i

c

√
h̄

2ωV
ak,α(0)eik·xi−iωtpi · ε̂

(α)|A;nk,α〉

= − e

me

√
nk,α h̄

2ωV

∑
i

〈B|eik·xipi · ε̂
(α)|A〉e−iωt.

Comparing this with the matrix element of the
semiclassical perturbation potential

V†ni = − eA0

mec

(
ei(ω/c)n̂·xε̂ · p

)
ni

we see that they both give exactly the same result
provided we use in the semiclassical theory the equivalent
radiation field

A(abs) = A
(abs)
0 eik·x−iωt,

where the amplitude is

A
(abs)
0 = c

√
nk,α h̄

2ωV
ε̂(α).

Because the transition probability is

• according to the semiclassical theory directly
proportional to the intensity of the radiation,

|A0|2 ∝ nk,α
,

• according to the quantum theory directly
proportional to the occupation number nk,α ,

both the semiclassical and quantum mechanical results
give equivalent results also at low intensities, i.e. when
nk,α is small.

Emission

Now

|i〉 = |A;nk,α〉
|f〉 = |B;nk,α + 1〉

and in the first order the only potential term of the field

A(x, t) =
1√
V

∑
k,α

c

√
h̄

2ω

[
ak,α

(0)ε̂(α)eik·x−iωt

+ a†
k,α

(0)ε̂(α)e−ik·x+iωt
]

is a†
k,α

which adds one photon to the final state. The
relevant matrix element is now

〈B;nk,α + 1|Hint|A;nk,α〉

= − e

me

√
(nk,α + 1)h̄

2ωV

∑
i

〈B|e−ik·xipi · ε̂
(α)|A〉eiωt.

If nk,α is very large then√
nk,α + 1 ≈√nk,α ,

and the semiclassical and quantum mechanical treatment
coincide.
If nk,α is small the semiclassical method fails completely.
In particular, the semicalssical treatment of the
spontaneous emission, nk,α = 0, is impossible. The
semiclassical method can be applied if we insert the atom
into the fictitious radiation field

A(emis) = A
(emis)
0 e−ik·x+iωt,

where

A
(emis)
0 = c

√
(nk,α + 1)h̄

2ωV
ε̂(α).

The field A(emis) is not

• directly proportional to the number of photons nk,α ,

• the complex conjugate of the field A(abs).

Example Spontaneous emission from the state A to the
state B.
In the first order the transition rate is

wA→B

=
2π

h̄
|〈B; 1k,α|Hint|A; 0〉|2δ(EB − EA + h̄ω)

=
2π

h̄

e2h̄

2m2
eωV

∣∣∣∣∣∑
i

〈B|e−ik·xi ε̂(α) · pi|A〉

∣∣∣∣∣
2

×δ(EB − EA + h̄ω).

Like in the photoelectric efect we can deduce that the
number of the allowed photon states ρ(E, dΩ) in the
energy interval (h̄ω, h̄ω + d(h̄ω)) and in the solid angle dΩ
is

ρ(E, dΩ) = n2 dn dΩ =
V

(2π)3
ω2

h̄c3 d(h̄ω) dΩ.

The transition rate of photons emitting into a certain
solid angle is thus

wdΩ =
2π

h̄

e2h̄

2m2
eωV

∣∣∣∣∣∑
i

〈B|e−ik·xi ε̂(α) · pi|A〉

∣∣∣∣∣
2

V ω2 dΩ
(2π)3h̄c3 ,

where h̄ω = EA − EB .
We consider only hydrogen like atoms so that only one
electron participates in the process and we restrict to the
dipole approximation. Then

wdΩ =
e2ω

8π2m2
eh̄c3 |〈B|p|A〉 · ε̂

(α)|2dΩ.



Earlier we saw that

〈B|p|A〉 =
ime(EB − EA)

h̄
〈B|x|A〉

= −imeωxBA.

We let the symbol Θ(α) stand for the angle between the
vector xBA and the polarization direction ε̂(α), i.e.

cos Θ(1) = sin θ cos φ

cos Θ(2) = sin θ sinφ,

when θ and φ are the direction angles of the vector x.
Then

wdΩ =
e2ω3

8π2h̄c3 |xBA|2 cos2 Θ(α)dΩ.

The total transition rate is obtained by integrating over
all propagation directions k/|k| and summing over both
polarizations:

w =
e2ω3

3πh̄c3 |xBA|2.

The life time of a state was obtained from the formula

1
τA

=
∑

i

wA→Bi
,

where we have to sum also over the magnetic quantum
numbers m. For example the life time of the hydrogen 2p
state is

τ(2p −→ 1s) = 1.6× 10−9s.

Electron photon scattering

We consider the process

|1k,α〉 −→ |1k′
,α′〉,

i.e.

• before the scattering the atom is in the state A, and
k and ε̂(α) are the wave vector and polarization of
the incoming photon.

• after the scattering the atom is in the state B, k′ is
the wave vector and ε̂(α′) the polarization vector of
the outgoing photon.

The Hamiltonian of the interaction is

Hint = − e

mec
A(x, t) · p +

e2

2m2
ec

2 A(x, t) ·A(x, t).

Because

• the number of photons does not change in the
scattering,

• in order to be non zero the matrix element of the
interaction must contain products of photon creation
and annihilation operators,

• in the term A · p creation and annihilation operators
appear as linear,

• in the term A ·A creation and annihilation operators
appear as quadratic,

only the quadratic term A ·A contributes in the first
order perturbation theory.
Only two of the terms of the form

aa†, a†a, aa, a†a†

in the operator A ·A have non zero matrix elements
provided that

• a† creates a photon of the type (k′, ε̂(α′)),

• a annihilates a photon of the type (k, ε̂(α),

and then
〈1k′

,α′ |ak,αa†
k′

,α′ |1k,α〉 = 1.

Now

〈B; 1k′
,α′ |Hint|A; 1k,α〉

= 〈B; 1k′
,α′

∣∣∣∣ e2

2mec
2 A(x, t) ·A(x, t)

∣∣∣∣A; 1k,α〉

= 〈B; 1k′
,α′

∣∣∣∣ e2

2mec
2 (ak,αa†

k′
,α′ + a†

k′
,α′ak,α)

× c2h̄

2V
√

ωω′
ε̂(α) · ε̂(α′)ei(k−k′

)·x−i(ω−ω′)t

∣∣∣∣A; 1k,α〉

=
e2

2mec
2

c2h̄

2V
√

ωω′
2ε̂(α) · ε̂(α′)e−i(ω−ω′)t〈B|A〉,

where again the exponential functions e±k·x are replaced
by the constant 1 (the long wave length approximation).
In the first order we have thus

c(1)(t) = − i

h̄

∫ t

t0

eiωfit
′
Vfi(t′) dt′

=
1
ih̄

e2

2mec
2

c2h̄

2V
√

ωω′
2δAB ε̂(α) · ε̂(α′)

×
∫ t

0

ei(h̄ω′+EB−h̄ω−EA)t′/h̄ dt′,

where ω = |k|c and ω′ = |k′|c. Now

• in the transition amplitude c(1)(t) the interaction is
in fact of second order: A ·A.

• in the second order correction c(2)(t) the term A · p
is also of second order.

To collect all contributions up to the second order in the
interaction we have to consider also the correction c(2)(t),
into which we take all double actions of the operator
A · p. Now

c(2)(t) =
(
− i

h̄

)2∑
m

∫ t

t0

dt′
∫ t′

t0

dt′′ eiωfmt′Vfm(t′)

×eiωmit
′′
Vmi(t′′).

Thus there are two possibilities: the interaction A · p can



• at the moment t1 annihilate the incoming photon
(k, ε̂(α)) and at some later time t2 create the
outgoing photon (k′, ε̂(α′)) or

• at the moment t1 create the outgoing photon
(k′, ε̂(α′)) and at some later time t2 annihilate the
incoming photon (k, ε̂(α)).

Between the moments t1 and t2 the atom is in the state I,
which normally is neither of the states A and B.
In the intermediate state I there are thus two
possibilities: either there are no photons present or both
incoming and outgoing photons are present. We get thus
(in the dipole approximation)

c(2)(t) =
1

(ih̄)2
c2h̄

2V
√

ωω′

(
− e

mec

)2 ∫ t

0

dt2

∫ t2

0

dt1

×
[∑

I

〈B|p · ε̂(α′)|I〉ei(EB−EI+h̄ω′)t2/h̄

×〈I|p · ε̂(α)|A〉ei(EI−EA−h̄ω)t1/h̄

+
∑

I

〈B|p · ε̂(α)|I〉ei(EB−EI+h̄ω)t2/h̄

×〈I|p · ε̂(α′)|A〉ei(EI−EA−h̄ω′)t1/h̄

]
= − c2h̄

ih̄2V
√

ωω′

(
e

mec

)2

×
∑

i

(
(p · ε̂(α′))BI(p · ε̂(α))IA

EI − EA − h̄ω

+
(p · ε̂(α))BI(p · ε̂(α′))IA

EI − EA + h̄ω′

)

×
∫ t

0

dt2 ei(EB−EA+h̄ω′−h̄ω)t2/h̄.

For the transition rate we get combining the terms c(1)(t)
and c(2)(t) and taking into account the relation

lim
t→∞

∣∣∣∣∫ t

0

eixt′ dt′
∣∣∣∣2 = 2πtδ(x)

the expression

wdΩ =
∫

(|c(1) + c(2)|2/t)ρ(E, dΩ) dE

=
2π

h̄

(
c2h̄

2V
√

ωω′

)2(
e2

mec
2

)2
V

(2π)3
ω′

2

h̄c3 dΩ

×
∣∣∣∣δAB ε̂(α) · ε̂(α′)

− 1
me

∑
I

(
(p · ε̂(α′))BI(p · ε̂(α))IA

EI − EA − h̄ω

+
(p · ε̂(α))BI(p · ε̂(α′))IA

EI − EA + h̄ω′

)∣∣∣∣2.
Because in the initial state there was exactly one photon
in the volume V and the flux density of the incoming

photons c/V , so the differential cross section is

dσ

dΩ
= r2

0

(
ω′

ω

) ∣∣∣∣δAB ε̂(α) · ε̂(α′)

− 1
me

∑
I

(
(p · ε̂(α′))BI(p · ε̂(α))IA

EI − EA − h̄ω

+
(p · ε̂(α))BI(p · ε̂(α′))IA

EI − EA + h̄ω′

)∣∣∣∣2,
where r0 ≈ 2.82× 10−13cm is the classical radius of
electron. This expression is known as the
Kramers-Heisenberg formula.
Example Elastic scattering.
Now A = B ja h̄ω = h̄ω′. Using the commutation
relations of the operators x and p, the completeness of
the intermediate states and the relation

pAB = imeωABxAB

we can write

ε̂(α) · ε̂(α′) =
1
ih̄

∑
I

[
(x · ε̂(α))AI(p · ε̂(α′))IA

−(p · ε̂(α))AI(x · ε̂(α′))IA

]
=

1
meh̄

∑
I

2
ωIA

(p · ε̂(α))AI(p · ε̂(α′))IA,

where ωIA = (EI − EA)/h̄.
We see that

δAAε̂(α) · ε̂(α′)

− 1
meh̄

∑
I

[
(p · ε̂(α′))AI(p · ε̂(α))IA

ωIA − ω

+
(p · ε̂(α))AI(p · ε̂(α′))IA

ωIA + ω

]

= − 1
meh̄

∑
I

[
ω(p · ε̂(α′))AI(p · ε̂(α))IA

ωIA(ωIA − ω)

−ω(p · ε̂(α))AI(p · ε̂(α′))IA

ωIA(ωIA + ω)

]
.

If ω is small then

1
ωIA ∓ ω

≈ 1± (ω/ωIA)
ωIA

.

Then ∑
I

1
ω2

IA

[
(p · ε̂(α′))AI(p · ε̂(α))IA

−(p · ε̂(α))AI(p · ε̂(α′))IA

]
= m2

e

∑
I

[
(x · ε̂(α′))AI(x · ε̂(α))IA

−(x · ε̂(α))AI(x · ε̂(α′))IA

]
= m2

e([x · ε̂
(α′),x · ε̂(α)])AA

= 0.



The differential cross section is now

dσ

dΩ
=

(
r0

meh̄

)2

ω4

∣∣∣∣∑
I

(
1

ωIA

)3

×[(p · ε̂(α′))AI(p · ε̂(α))IA

+ (p · ε̂(α))AI(p · ε̂(α′))IA]
∣∣∣∣2

=
(r0me

h̄

)2

ω4

∣∣∣∣∑
I

1
ωIA

×[(x · ε̂(α′))AI(x · ε̂(α))IA

+(x · ε̂(α))AI(x · ε̂(α′))IA]
∣∣∣∣2.

At long wave lengths the differential cross section obeys
the Rayleigh law or

dσ

dΩ
∝ 1

λ4 .

Now

• for ordinary colourless gases ωIA corresponds to wave
lengths in the ultraviolet,

• for the visible light we have then ω � ωIA,

so our approximations are valid in the atmossphere. The
theory explains why the sky is blue and the sunset red.


