Dirac’s equation

We construct relativistically covariant equation that takes
into account also the spin.

The kinetic energy operator is
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Previously we derived for Pauli spin matrices the relation
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so we can also write
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However, when the particle moves under the influence of
a vector potential these expressions differ. Substituting
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the latter takes the form
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where we have used the identities
(0-a)(oc-b)=a-b+ioc-(axb)

and

pxA=—ih(VxA) —AXxp.

Let us suppose that for the relativistically invariant
expression
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the operator analogy
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holds. Here
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We write the operator equation into the form
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Here ¢ is a two component wave function (spinor).
We define new two component wave functions
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It is easy to see that these satisfy the set of simultaneous
equations
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We define yet new two component wave functions
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These in turn satisfy the matrix equation
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We now define the four component wave function
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and the 4 x 4-matrices
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We end up with the Dirac’s equation
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for free Spin—% particles. Employing the four vector

notation the equation takes the form
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Note The Dirac equation is in fact a set of four coupled
linear differential equations. The wave function 1) is the
four component vector
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This kind of a four component object is called bispinor or
Dirac’s spinor. Explicitely written down the Dirac
equation is
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Note The fact that the Dirac spinor happens to have
four components has nothing to do with our four
dimensional space-time; 13 does not transform like a four
vector under Lorentz transformations.

It is easy to verify that the gamma-matrices (Dirac
matrices) vy, satisfy the anticommutation rule
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Furthermore, every v, is Hermitian,
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and traceless, i.e.
Trv, = 0.

Let’s multiply the equation
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on both sides by the matrix v4 and we get
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which satisfy the relations
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When we now write
H = —icha -V + fmc?,
the Dirac equation takes the familiar form

in2?

We define the adjungated spinor 1 like:
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Explicitely, if v is a column vector
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then ¥ and 1) are row vectors
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Forming the Hermitean conjugate of the Dirac equation
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we get
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We multiply this from right by the matrix 74 and end up
with the adjungated equation
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Here we have used the relations
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Let’s multiply the original Dirac equation
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from left with the adjungated spinor 1) and the
adjungated equation

6 me -
w’m + 71# =0
from right with the spinor ¢ and subtract the resulting
equations. We then get
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The quantity

s = ichyab = (vl o), icply)
thus satisfies a continuity equation. According to Green’s
theorem we have
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where the constant can be taken to be 1 with a suitable
normalization of 1. Because ¥y41 = ¥4 is positively
definite it can be interpreted as a probability density.
Then

s, = ichy = el agt)

can be identified as the density of the probability current.
Note It can be shown that s, transforms like a four
vector, so the continuity equation is relativistically
covariant.

It can be proved that any sets of four matrices 7, and 'Y;IL
satisfying the anticommutation relations
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are related to eachother through a similarity
transformation with a non-singular 4 x 4-matrix S:

Sv,S™t = Vo

With the help of the matrices 'y; the original Dirac
equation can be written as
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Multiplying this from left with the matrix S we get

where
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Suppose now that
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and measure the energy starting from the rest energy:
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We expand
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This can be taken to be the power series in (v/c)? since
ENR) _ Ay~ [p— (eA/c)]?/2m ~ mv? /2.

Taking into account only the leading term we get

Thus Dirac’s equation is independent on the explicit form 1 eA cA (NR)
of the matrices ~,; only the anticommutation of the o \P— )9 \P™ Ya = (E —edo)a.
matrices is relevant. If the matrices +;, are Hermitean the ) )

This can be written as

transformation matrix S can be taken to be unitary. It is

easy to show that then the probability density and 1 AN 2 ek NR
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representation:

1/7%21// = Pyt Up to the zeroth order of (v/c)? the component 14 is
thus the two component Schrédigger—Pauli wave function
(multiplied with the factor e~¥¢"t) familiar from the

non-relativistic quantum mechanics. The equation

_ [0-. (p_ 614)] Yy = —%(E—BAO +m62)w3

c

Vector potential
When the system is subjected to a vector potential

A, = (A,iAy),
tells us that the component ¥ p is roughly by the factor
lp — (eA/c)|/2me = v/2¢

we make the ordinary substitutions

—ih(0/0x,) — —ih(0/0x,) — eA,/c.
"less” than 14. Due to this, provided that E ~ mc?, ¥4
is known as the big and ¢ g as the small component of the
Dirac wave function .

We obtain relativistic corrections only when we consider
the second or higher order terms of the expansion

The Dirac equation takes now the form
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Assuming that A, does not depend on time the time ¢ 1 [ 2mc? }
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Let us write now the Dirac equation for the components
W4 and Vg Let us suppose now that
A=0.
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The wave equation is then
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where

With the help of the latter equation we eliminate ¥g
from the upper equation and get
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This wave equation looks like a time independent
Schrédinger equation for the wave function 4.
= (Howexkr— mc?)y 4.



e cvaluating corrections up to the order (v/c)? the
wave function 4 is not normalized because the
probability interpretation of Dirac’s theory requires
that

J@ha+vbva) iz =1,
where 1 already of the order v/c.

e explicitely writing down the expression for the
operator H 4 we see that it contains the
non-Hermitian term ¢hE - p.

e the equation is not an eigenvalue equation since H 4
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itself contains the term E .
Up to the order (v/c)? the normalization condition can
now be written as
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because according to the equation
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It is worthwhile to define the new two component wave

function W:
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where )
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Now W is up to the order (v/c)? normalized correctly
because
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We multiply the equation

Hapa = ESVyy,
on both sides with the operator
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and get
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Explicitely, up to the order (v/c)? this can be written as
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Writing E&N®p? in the form ${ENR®) p2} we get
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Because for arbitrary operators A and B
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holds we can, by setting
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reduce the equation into the form
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In the derivation of the equation we have employed the
relations

lo-p, (ENY —eAg)] = —icho - E
[0 -p,—icho-E] = —eh’V-E
—2eho - (E X p),

the validity of which can be verified by noting that

V4, = —-FE
VxE = 0.

The resulting equation is a proper Schrodinger equation
for a two component wave function.

Physical interpretation

We look at the meaning of the terms in the equation
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1. The term Qpﬁ + eAy gives the non-realtivistic
Schrédinger equation.
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2. The term — 3 P =— is a relativistic correction to the
m°c
kinetic energy as can be seen from the expansion
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eho - (E X
3. The term —#

between the spin of a moving electron and electric field.
Intuitively this, so called Thomas term, is due to the fact
that the moving electron experiences an apparent
magnetic field E x (v/c). If the electric field is a central
field,

describes the interaction

eAy =V (r),

it can be written in the form
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where we have substituted
S = ho/2.

So we actually have a spin orbit interaction.
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4. The term — efg 5V - E is known as the Darwin term.

Its meaning can be deduced when we note that V - E is
the charge density. For example, in the hydrogen atom
where V- E = —ed(x) it causes the energy shift
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which differs from zero only in the s-state.



