
Dirac’s equation
We construct relativistically covariant equation that takes
into account also the spin.
The kinetic energy operator is

H(KE) =
p2

2m
.

Previously we derived for Pauli spin matrices the relation

(σ · a)2 = |a|2,

so we can also write

H(KE) =
(σ · p)(σ · p)

2m
.

However, when the particle moves under the influence of
a vector potential these expressions differ. Substituting

p 7→ p− eA/c

the latter takes the form
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(
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)
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(
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− eh̄

2mc
σ ·B,

where we have used the identities

(σ · a)(σ · b) = a · b + iσ · (a× b)

and
p×A = −ih̄(∇×A)−A× p.

Let us suppose that for the relativistically invariant
expression

(E2/c2)− p2 = (mc)2

the operator analogy

1
c2
E(op)2 − p2 = (mc)2

holds. Here
E(op) = ih̄

∂

∂t
= ih̄c

∂

∂x0

and
p = −ih̄∇.

We write the operator equation into the form(
E(op)

c
− σ · p

)(
E(op)

c
+ σ · p

)
= (mc)2

or (
ih̄

∂

∂x0
+ σ · ih̄∇

)(
ih̄

∂

∂x0
− σ · ih̄∇

)
φ = (mc)2φ.

Here φ is a two component wave function (spinor).
We define new two component wave functions

φ(R) =
1
mc

(
ih̄

∂

∂x0
− ih̄σ · ∇

)
φ

φ(L) = φ.

It is easy to see that these satisfy the set of simultaneous
equations [

ih̄σ · ∇ − ih̄
∂

∂x0

]
φ(L) = −mcφ(R)[

−ih̄σ · ∇ − ih̄
∂

∂x0

]
φ(R) = −mcφ(L).

We define yet new two component wave functions

ψA = φ(R) + φ(L)

ψB = φ(R) − φ(L).

These in turn satisfy the matrix equation −ih̄ ∂
∂x0

−ih̄σ · ∇

ih̄σ · ∇ ih̄ ∂
∂x0

( ψA

ψB

)
= −mc

(
ψA

ψB

)
.

We now define the four component wave function

ψ =
(
ψA

ψB

)
=
(
φ(R) + φ(L)

φ(R) − φ(L)

)
and the 4× 4-matrices

γk =
(

0 −iσk

iσk 0

)
γ4 =

(
1 0
0 −1

)
.

We end up with the Dirac’s equation(
γ · ∇+ γ4

∂

∂(ix0)

)
ψ +

mc

h̄
ψ = 0

for free spin- 1
2 particles. Employing the four vector

notation the equation takes the form(
γµ

∂

∂xµ
+
mc

h̄

)
ψ = 0.

Note The Dirac equation is in fact a set of four coupled
linear differential equations. The wave function ψ is the
four component vector

ψ =


ψ1

ψ2

ψ3

ψ4

 .

This kind of a four component object is called bispinor or
Dirac’s spinor. Explicitely written down the Dirac
equation is

4∑
µ=1

4∑
β=1

[
(γµ)αβ

∂

∂xµ
+
(mc
h̄

)
δαβ

]
ψβ = 0.



Note The fact that the Dirac spinor happens to have
four components has nothing to do with our four
dimensional space-time; ψβ does not transform like a four
vector under Lorentz transformations.
It is easy to verify that the gamma-matrices (Dirac
matrices) γµ satisfy the anticommutation rule

{γµ, γν} = γµγν + γνγµ = 2δµν .

Furthermore, every γµ is Hermitian,

γ†µ = γµ,

and traceless, i.e.
Tr γµ = 0.

Let’s multiply the equation(
γ · ∇+ γ4

∂

∂(ix0)

)
ψ +

mc

h̄
ψ = 0

on both sides by the matrix γ4 and we get(
ch̄γ4γ · ∇ − ih̄

∂

∂t

)
ψ + γ4mc

2ψ = 0.

Denote

β = γ4 =
(

1 0
0 −1

)
αk = iγ4γk =

(
0 σk

σk 0

)
,

which satisfy the relations

{αk, β} = 0
β2 = 1

{αk, αl} = 2δkl.

When we now write

H = −ich̄α · ∇+ βmc2,

the Dirac equation takes the familiar form

Hψ = ih̄
∂ψ

∂t
.

We define the adjungated spinor ψ̄ like:

ψ̄ = ψ†γ4.

Explicitely, if ψ is a column vector

ψ =


ψ1

ψ2

ψ3

ψ4

 ,

then ψ† and ψ̄ are row vectors

ψ† = (ψ∗
1 , ψ

∗
2 , ψ

∗
3 , ψ

∗
4)

ψ̄ = (ψ∗
1 , ψ

∗
2 ,−ψ∗

3 ,−ψ∗
4).

Forming the Hermitean conjugate of the Dirac equation(
γµ

∂

∂xµ
+
mc

h̄

)
ψ = 0

we get
∂

∂xk
ψ†γk +

∂

∂x∗4
ψ†γ4 +

mc

h̄
ψ† = 0.

We multiply this from right by the matrix γ4 and end up
with the adjungated equation

− ∂

∂xµ
ψ̄γµ +

mc

h̄
ψ̄ = 0.

Here we have used the relations

∂

∂x∗4
=

∂

∂(ict)∗
= − ∂

∂x4

γkγ4 = −γ4γk.

Let’s multiply the original Dirac equation(
γµ

∂

∂xµ
+
mc

h̄

)
ψ = 0

from left with the adjungated spinor ψ̄ and the
adjungated equation

− ∂

∂xµ
ψ̄γµ +

mc

h̄
ψ̄ = 0

from right with the spinor ψ and subtract the resulting
equations. We then get

∂

∂xµ
(ψ̄γµψ) = 0.

The quantity

sµ = icψ̄γµψ = (cψ†αψ, icψ†ψ)

thus satisfies a continuity equation. According to Green’s
theorem we have∫

ψ̄γ4ψ d
3x =

∫
ψ†ψ d3x = constant,

where the constant can be taken to be 1 with a suitable
normalization of ψ. Because ψ̄γ4ψ = ψ†ψ is positively
definite it can be interpreted as a probability density.
Then

sk = icψ̄γkψ = cψ†αkψ

can be identified as the density of the probability current.
Note It can be shown that sµ transforms like a four
vector, so the continuity equation is relativistically
covariant.
It can be proved that any sets of four matrices γµ and γ′µ
satisfying the anticommutation relations

{γµ, γν} = 2δµν

{γ′µ, γ′ν} = 2δµν ,



are related to eachother through a similarity
transformation with a non-singular 4× 4-matrix S:

SγµS
−1 = γ′µ.

With the help of the matrices γ′µ the original Dirac
equation can be written as(

S−1γ′µS
∂

∂xµ
+
mc

h̄

)
S−1Sψ = 0.

Multiplying this from left with the matrix S we get(
γ′µ

∂

∂xµ
+
mc

h̄

)
ψ′ = 0,

where
ψ′ = Sψ.

Thus Dirac’s equation is independent on the explicit form
of the matrices γµ; only the anticommutation of the
matrices is relevant. If the matrices γ′µ are Hermitean the
transformation matrix S can be taken to be unitary. It is
easy to show that then the probability density and
current, for example, are independent on the
representation:

ψ̄′γ′µψ
′ = ψ̄γµψ.

Vector potential

When the system is subjected to a vector potential

Aµ = (A, iA0),

we make the ordinary substitutions

−ih̄(∂/∂xµ) 7→ −ih̄(∂/∂xµ)− eAµ/c.

The Dirac equation takes now the form(
∂

∂xµ
− ie

h̄c
Aµ

)
γµψ +

mc

h̄
ψ = 0.

Assuming that Aµ does not depend on time the time
dependence of the spinor ψ can be written as

ψ = ψ(x, t)|t=0 e
−iEt/h̄.

Let us write now the Dirac equation for the components
ψA and ψB :[

σ ·
(

p− eA

c

)]
ψB =

1
c
(E − eA0 −mc2)ψA

−
[
σ ·
(

p− eA

c

)]
ψA = −1

c
(E − eA0 +mc2)ψB .

With the help of the latter equation we eliminate ψB

from the upper equation and get[
σ ·
(

p− eA

c

)][
c2

E − eA0 +mc2

] [
σ ·
(

p− eA

c

)]
ψA

= (E − eA0 −mc2)ψA.

Suppose now that

E ≈ mc2, |eA0| � mc2

and measure the energy starting from the rest energy:

E(NR) = E −mc2.

We expand

c2

E − eA0 +mc2
=

1
2m

[
2mc2

2mc2 + E(NR) − eA0

]
=

1
2m

[
1− E(NR) − eA0

2mc2
+ · · ·

]
.

This can be taken to be the power series in (v/c)2 since

E(NR) − eA0 ≈ [p− (eA/c)]2/2m ≈ mv2/2.

Taking into account only the leading term we get

1
2m

σ ·
(

p− eA

c

)
σ ·
(

p− eA

c

)
ψA = (E(NR) − eA0)ψA.

This can be written as[
1

2m

(
p− eA

c

)2

− eh̄

2mc
σ ·B + eA0

]
ψA = E(NR)ψA.

Up to the zeroth order of (v/c)2 the component ψA is
thus the two component Schrödinger-Pauli wave function
(multiplied with the factor e−imc2t) familiar from the
non-relativistic quantum mechanics. The equation

−
[
σ ·
(

p− eA

c

)]
ψA = −1

c
(E − eA0 +mc2)ψB

tells us that the component ψB is roughly by the factor

|p− (eA/c)|/2mc ≈ v/2c

”less” than ψA. Due to this, provided that E ≈ mc2, ψA

is known as the big and ψB as the small component of the
Dirac wave function ψ.
We obtain relativistic corrections only when we consider
the second or higher order terms of the expansion

c2

E − eA0 +mc2
=

1
2m

[
2mc2

2mc2 + E(NR) − eA0

]
=

1
2m

[
1− E(NR) − eA0

2mc2
+ · · ·

]
.

Let us suppose now that

A = 0.

The wave equation is then

HAψA = E(NR)ψA,

where

HA = (σ · p)
1

2m

(
1− E(NR) − eA0

2mc2

)
(σ · p) + eA0.

This wave equation looks like a time independent
Schrödinger equation for the wave function ψA.
However,



• evaluating corrections up to the order (v/c)2 the
wave function ψA is not normalized because the
probability interpretation of Dirac’s theory requires
that ∫

(ψ†
AψA + ψ†

BψB) d3x = 1,

where ψB already of the order v/c.

• explicitely writing down the expression for the
operator HA we see that it contains the
non-Hermitian term ih̄E · p.

• the equation is not an eigenvalue equation since HA

itself contains the term E(NR).

Up to the order (v/c)2 the normalization condition can
now be written as∫

ψ†
A

(
1 +

p2

4m2c2

)
ψA d

3x ≈ 1,

because according to the equation

−
[
σ ·
(

p− eA

c

)]
ψA = −1

c
(E − eA0 +mc2)ψB

we have
ψB ≈ σ · p

2mc
ψA.

It is worthwhile to define the new two component wave
function Ψ:

Ψ = ΩψA,

where

Ω = 1 +
p2

8m2c2
.

Now Ψ is up to the order (v/c)2 normalized correctly
because∫

Ψ†Ψ d3x ≈
∫
ψ†

A

(
1 +

p2

4m2c2

)
ψA d

3x.

We multiply the equation

HAψA = E(NR)ψA,

on both sides with the operator

Ω−1 = 1− (p2/8m2c2),

and get
Ω−1HAΩ−1Ψ = E(NR)Ω−2Ψ.

Explicitely, up to the order (v/c)2 this can be written as[
p2

2m
+ eA0 −

{
p2

8m2c2
,

(
p2

2m
+ eA0

)}
− (σ · p)

2m

(
E(NR) − eA0

2mc2

)
(σ · p)

]
Ψ

= E(NR)

(
1− p2

4m2c2

)
Ψ.

Writing E(NR)p2 in the form 1
2{E

(NR),p2} we get[
p2

2m
+ eA0 −

p4

8m3c2

+
1

8m2c2

(
{p2, (E(NR) − eA0)}

−2(σ · p)(E(NR) − eA0)(σ · p)
)]

Ψ

= E(NR)Ψ.

Because for arbitrary operators A and B

{A2, B} − 2ABA = [A, [A,B]]

holds we can, by setting

σ · p = A

E(NR) − eA0 = B,

reduce the equation into the form[
p2

2m
+ eA0 −

p4

8m3c2

−eh̄σ · (E × p)
4m2c2

− eh̄2

8m2c2
∇ ·E

]
Ψ

= E(NR)Ψ.

In the derivation of the equation we have employed the
relations

[σ · p, (E(NR) − eA0)] = −ieh̄σ ·E
[σ · p,−ieh̄σ ·E] = −eh̄2∇ ·E

−2eh̄σ · (E × p),

the validity of which can be verified by noting that

∇A0 = −E

∇×E = 0.

The resulting equation is a proper Schrödinger equation
for a two component wave function.
Physical interpretation
We look at the meaning of the terms in the equation[

p2

2m
+ eA0 −

p4

8m3c2

−eh̄σ · (E × p)
4m2c2

− eh̄2

8m2c2
∇ ·E

]
Ψ

= E(NR)Ψ.

1. The term p2

2m + eA0 gives the non-realtivistic
Schrödinger equation.

2. The term − p4

8m3c2
is a relativistic correction to the

kinetic energy as can be seen from the expansion

√
(mc2)2 + |p|2c2 −mc2 =

|p|2

2m
− |p|4

8m3c2
+ · · · .



3. The term −eh̄σ · (E × p)
4m2c2

describes the interaction
between the spin of a moving electron and electric field.
Intuitively this, so called Thomas term, is due to the fact
that the moving electron experiences an apparent
magnetic field E × (v/c). If the electric field is a central
field,

eA0 = V (r),

it can be written in the form

− eh̄

4m2c2
σ · (E × p) = − h̄

4m2c2

(
−1
r

dV

dr

)
σ · (x× p)

=
1

2m2c2
1
r

dV

dr
S ·L,

where we have substituted

S = h̄σ/2.

So we actually have a spin orbit interaction.

4. The term − eh̄2

8m2c2
∇ ·E is known as the Darwin term.

Its meaning can be deduced when we note that ∇ ·E is
the charge density. For example, in the hydrogen atom
where ∇ ·E = −eδ(x) it causes the energy shift∫

e2h̄2

8m2c2
δ(x)|ψ(Schrö)|2 d3x =

e2h̄2

8m2c2
|ψ(Schrö)|2

∣∣∣∣
x=0

,

which differs from zero only in the s-state.


