7636225 ADVANCED QUANTUM MECHANICS Solutions 1~ Spring 2010

1. Warm up

a) Show that the eigenvalues of a Hermitian operator A are real and that the eigenkets
of A corresponding to different eigenvalues are orthogonal.

b) Show that if the state ket |o) = >, ¢, |@’) is normalized then the expansion coeff-
clents ¢, must satisfy >, |ca|? = 1.

Solution:

a)
i)

ii)

A number c¢ is shown to be real if ¢ = ¢. Let us study Hermitian operator A
to whom holds AT = A and an eigenstate |a) corresponding an eigenvalue a,
such that A|a) = ala). Based on evalution of the inner product

¢ = (a|A|a) = alala)

the eigenvalue a has the expression

Let us now study what is a*?

_ ¢ _ (alAla) _ (alAMa) _ (a|A]a)
((ala))* (ala) (ala) (ala)

Now it has been proven that a Hermitian operator A has real eigenvalues.
To prove that the eigenkets of A corresponding to different eigenvalues are
orthogonal (i.e. (bla) = 0), we examine the inner product (b|A|a) between
two eigenstates |a) and |b) corresponding different eigenvalues a and b, (a # b).
The inner product can be evaluated two different ways:

d=(b|A|a) = a(b|a)

d=(b|A|a) = (b|AT|a) = b(bla).

In the latter, the hermicity of A is applied. Now the above two expression are
subtracted from each other

0= (a—"0b)(bla)

which implies in case of a # b that (bla) = 0.



b) First of all,

ot = (et ) (S ) = et = S ot e
a// a/7a/l a/
then the normalization condition

[{ala)* = ({ala))® =1

straight implies that
1= {(ala) = Z |car|?.

The previous proof about orthogonality (a.ii) holds also for a degenerate case, then corre-
sponding an eigenvalue, say, b, we have a set of eigenstates |b1) , [b2) , ..., |b;), but anyway
all of them are orthogonal to some other eigenstate |a) corresponding eigenvalue a # b.

. Prove the Theorem 1 from lecture notes:
If both of the basis {|a’)} and {|b')} are orthonormalized and complete then there exists
a unitary operator U so that

b1) =Ula1), [|ba) =Ulaz), [b3)="Ulas), ... (1)

(Unitary operator: UTU = UUT = 1)

Solution:

The proof has three stages: construction of operator U, proof of property (1) and proof
of unitarity. Construction procedure is rather easy, we would like to build an operator
that projects the basis state |a;) to basis state |b;):

U=>1b){al|.
J
To show that the property (1) holds, operator U operates on an arbitrary basis state |a):

Ulag) = Z 1b;) (ajlar) = Z 1b;) k= [bx)

where the orthonormality of basis {|a’)} plays a role. The unitarity is checked via brute
calculation:

UUt = 7165} {asl D (1bs) (eal)' = Z 10;) (] Z a:) (b
—Z ) {lad bl = D)l =1

5LJ ;,_/
completeness of {|b')}



3. Consider the spin operators S,, S, and S, in the {|S.;1),|S.; )} basis
a) Write out the operators S,, S, and S, in the {|S.;T),|S.; |)} basis.
b) Compute the commutators [S;, S,] and [S?, S,] as well as anticommutator {5, S, }.
¢) Let us define the ladder operators Sy = S,+1S,. Compute Sy |S,; T) and Sy |S,; |).
Solution:
Let us first summarize the {|S.; 1) ,|S.; )} basis represented with the help eigenstates of
S, and S, operators with proper phase choice (see. e.g. J. J. Sakurai, Modern Quantum
Mechanics, p. 28):

1 1 1 1
1525 1) = 7 1Sz 1) + 7 1S2; 1) 1525 1) = NG |Sy; T) + NG 1Sy; 1)
1 1 1 1
1525 1) = 7 1Sz T) — 7 |Sz; 1) 1525 1) = 7 |Sy; T) + NG |Sy: 1) (2)

Representation of an operator B in the {|S.;1),|5.; |)} basis
B=> " 154 (S:4 Bl Saik) (e k| =D Y B |8e:4) (i bl
j=1 k=1l j=1 k=1l

and in matrix representation we use the following convention with the indecies
Bjk = <Szaj |B| Sz; k>

B (BTT Bu) _ (<SZ;T B|S:31) (Sai1 |B|5z;l>)
BlT BU <Sz§l |B’SzaT> <Sz§l \B’SZ,U .

a) Basis representation for operator S, is after above definitions just the calculation
of matrix elements Bj:

5 = <<SZ;T |S.1521) (S:51 \SZISZ;U)
NS LIS ST (Sas L 1S: Sz L)

_h (<SZ;T 925 1) =851 |Sz;¢>) _h (1 0)
<Sz;l‘SZQT> _<Sz;l‘sz;l> 2 0o —1/°

To do the same for S,, we resort to relations (2) and find out that
h h
82 |9 1) = 5155 1) Sy|9::1) =i515: 1)
h N
Sa 823 1) = 5152 1) SyS=: 1) = =15 15 1)

which shows that
o ; | ;1 [Se|

o <<SZ7T|S|SZ,> (S2:1]



b)

As we now have the representations of operators S; in the S, eigenstate basis we
can use them to calculate the (anti)commutators.

soiessss5(0 D0 3)-C ) )

= ihS,

(The general rule goes [S;, S;| = ifi€;j5Sk, where €;;5 is the Levi-Civita permutation
symbol.)

Then it happens out that S7 = h?/4 for all i = x,y, 2, therefore 5* = 52457+ 57 =
3h?/4 and it is clear that [S?,S,] = 3h*[I,S,]/4 = 0. When calculating [S,, S,| one
notices that S,S, = —S,5, which implies that {S,,S,} = 0.
Since matricies are handy objects, let us express ladder opertors Sy also in the
familiar {|S,;1),|S.; |)} basis: Sy =S, £15,.
01
(o)

G B0y, hl0 1
T 2\10) T 2\-10

h(o 1\ h(0 -1 0 0
5_5(1 0>+§<1 0)—h(1 0)'

S+:h|SZ7T> <SZJH S :h|527l> <527T|

or

and operations to S, eigenstates result

Sy 1551 =0 S_|S:51) = h(S:; 1)
Si18. 1) = kS 1) S_18.:1)=0

Now, the physical meaning of the ladder operators can be read. Operator S, raises
the spin component by A and if the spin component cannot be raised further, we
get null state. Similarly, S_ lowers the spin component by A. Both these operators
are non-Hermitian.



4. Prove the Theorem 2 from lecture notes:
If T is a unitary matrix, then the matrices X and T7XT have the same trace and
the same eigenvalues.
Solution:
i) Trace of a matrix X is the sum of its diagonal elements: Tr (X) = ). X;; and
as an reminder the matrix multiplication expressed in index notation goes
(AB);; = >, AixByj. The unitarity of T" has then index expression:

TP =1 = > TuT =6
T'"T=1 = zk:Tjkaj = 0y
k
With these in our mind we are ready to prove the trace invariance:
Tr (TTXT) = Z T'XT), ZZZ Xk T
= Z Z # D Tl
koo ‘

N
Sk
= X =Tr(X
k
ii) The matrix X has eigenvalues {a1, as, ..., a,} and corresponding eigenvectors
{la1),laz),...,la,)}. By constructing a new set of vectors such that |b;) =

T"|a;) and evaluating
T'XT |b;) = T'XTT" |a;) = T'X |a;) = a;T" |a;) = a;[bj) ,

we observe that |b;) are the eigenvectors of matrix T7XT corresponding the
same eigenvalues {a;, as, ..., a,}. Thus matricies X and TTXT has the same
eigenvalues if 7' is a unitary matrix.



5. The translation operator for a finite (spatial) displacement is given by

- (1)

where p is the momentum operator and 1 the displacement vector.
a) Evaluate [x;, T (1)].
b) How does the expectation value (x) of the position operator change under
the translation?
Solution:
a) As introduced in lectures the effect of a finite spatial displacement by 1 is
7(1) |x) = |x +1). When evaluating commutator one should remember when
x; is an operator and when a pure number, to distinguish these two cases I use
now notation z; for operator and x; for number. Let us introduce arbitrary
state |o) having presentation in configuration space |a) = [ dx |x) (x|a)

[, TN |a) = 2T (1) [) = T()F; )
= i:z/ dx |x + 1) (x]|a) — T(l)/ dx z; |x) (x|a)
= / dx (z; + ;) |x + 1) (x]ar) — / dx z; |x + 1) (x|a)
_ / dx; [x +1) (x|a) = LT (1) |a).

Now we say that [%;,7(1)] = [;7(1), which is an operator identity since it
holds for an arbitrary state. Furthermore, we know by generalising the result
that X7 (1) = 7()x =17(1) or x7 (1) = T (1)(1 + x).

b) Before the translation, the expectation value of position operator x for an
arbitrary state is (z) = (a/|x|«) and after the translation

(a1 %] aq) = (| TTXT (V)| @) = (a|TTMT (1)1 + %)| @)
= (a|l+x|a)
=1+ (z),

which is not any big surprise.



