1. Consider a three dimensional ket space. If a certain set of orthonormal kets, say  $|1\rangle$ ,  $|2\rangle$  and  $|3\rangle$  are used as the base kets, then the operators A and B are represented by

$$A = \begin{pmatrix} a & 0 & 0 \\ 0 & -a & 0 \\ 0 & 0 & -a \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} b & 0 & 0 \\ 0 & 0 & -ib \\ 0 & ib & 0 \end{pmatrix}$$

in which both a and b are real.

- a) Obviously A exhibits a degenerate spectrum. Does B have a degenerate spectrum as well?
- b) Show that A and B commute.
- c) Find a new (orthonormal) set of base kets which are simultaneous eigenkets of both A and B. Specify the eigenvalues of A and B for each of the three eigenkets. Does your specification of eigenvalues completely characterize each eigenket?

## Solution:

a) From the matrix representation of B we can see that the ket  $|1\rangle$  is an eigenvector of operator B with eigenvalue b, *i.e.* 

$$B \mid 1 \rangle = \left( \begin{array}{ccc} b & 0 & 0 \\ 0 & 0 & -ib \\ 0 & ib & 0 \end{array} \right) \left( \begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right) = \left( \begin{array}{c} b \\ 0 \\ 0 \end{array} \right) = b \left( \begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right) = b \mid 1 \rangle \; .$$

As the matrix of operator B is Hermitian so its eigenvalues must be real. It only remains to diagonalize the minor  $M_{11}$  of matrix B.

$$\det\left(M_{11} - \lambda I\right) = 0,$$

therefore

$$\lambda^2 + b^2 = 0 \quad \to \quad \lambda = \pm b.$$

We have found that the eigenvalues of B are  $\{-b, b, b\}$ , concluding that operator B has a degenerate spectrum.

b) Let us calculate the products AB and BA independently.

$$AB = \begin{pmatrix} a & 0 & 0 \\ 0 & -a & 0 \\ 0 & 0 & -a \end{pmatrix} \begin{pmatrix} b & 0 & 0 \\ 0 & 0 & -ib \\ 0 & ib & 0 \end{pmatrix} = \begin{pmatrix} ab & 0 & 0 \\ 0 & 0 & iab \\ 0 & -iab & 0 \end{pmatrix},$$

$$BA = \begin{pmatrix} b & 0 & 0 \\ 0 & 0 & -ib \\ 0 & ib & 0 \end{pmatrix} \begin{pmatrix} a & 0 & 0 \\ 0 & -a & 0 \\ 0 & 0 & -a \end{pmatrix} = \begin{pmatrix} ab & 0 & 0 \\ 0 & 0 & iab \\ 0 & -iab & 0 \end{pmatrix}.$$

We are now in conditions of writing the commutator:

$$[A, B] = AB - BA = 0.$$

Therefore A and B must share a simultaneous set of eigenvectors.

- c) We already have the first of the eigenvector in that particular set, *i.e.* ket  $|1\rangle$ . Let us find now the remaining eigenvectors of operator B in the subspace  $M_{11}$ .
  - Eigenvector associated to eigenvalue b. Let us rename it as  $|2'\rangle$ .

$$\left(\begin{array}{cc} 0 & -ib \\ ib & 0 \end{array}\right) \left(\begin{array}{c} c_2 \\ c_3 \end{array}\right) = \left(\begin{array}{c} bc_2 \\ bc_3 \end{array}\right)$$

Thus

$$\begin{cases} -ibc_3 = bc_2 \\ ibc_2 = bc_3 \end{cases} \rightarrow c_3 = ic_2.$$

If we want our eigenvectors normalized, then  $c_2^2 = c_3^2 = 1/2$ .

• Eigenvector associated to eigenvalue -b. Let us rename it as  $|3'\rangle$ .

$$\left(\begin{array}{cc} 0 & -ib \\ ib & 0 \end{array}\right) \left(\begin{array}{c} c_2 \\ c_3 \end{array}\right) = \left(\begin{array}{c} -bc_2 \\ -bc_3 \end{array}\right)$$

Thus

$$\begin{cases} ibc_3 = bc_2 \\ ibc_2 = -bc_3 \end{cases} \rightarrow c_3 = -ic_2.$$

If we want our eigenvectors normalized, then  $c_2^2 = c_3^2 = 1/2$ .

We have to check that these new eigenvectors are shared with operator A.

$$A \mid 2' \rangle = \begin{pmatrix} a & 0 & 0 \\ 0 & -a & 0 \\ 0 & 0 & -a \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ i \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ -a \\ -ia \end{pmatrix} = -a \mid 2' \rangle$$

$$A \mid 3' \rangle = \begin{pmatrix} a & 0 & 0 \\ 0 & -a & 0 \\ 0 & 0 & -a \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ -i \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ -a \\ ia \end{pmatrix} = -a \mid 3' \rangle$$

The primed notation  $(|1'\rangle)$  is enough, but another and sure more informatic naming convection is to characterize the eigenvectors with their eigenvalues respect operator A and B, respectively

$$|a,b\rangle = |1\rangle$$
  $|-a,b\rangle = \frac{1}{\sqrt{2}}(|2\rangle + \mathrm{i}|3\rangle)$   $|-a,-b\rangle = \frac{1}{\sqrt{2}}(|2\rangle - \mathrm{i}|3\rangle)$ 

2. Evaluate the uncertainty relation of x and p operators for a particle confined in an infinite potential well (between two unpenetrable walls.) Some help: In this case the potential can be written:V(x) = 0, when 0 < x < a and otherwise  $V = \infty$ . From quantum mechanics we remember that the wave function in such a potential reads  $\psi_n(x) = \sqrt{2/a} \sin(n\pi x/a)$ , in which number n refers to the nth excitation while n = 1 is the ground state.

**Solution:** The uncertainty relation for x and p is given by the product of the standard deviations  $\Delta x$  and  $\Delta p$ , i.e.,  $\Delta x \Delta p$ . The standard deviation for a generic observable q in the system state  $\psi$  is given by

$$\Delta_{\psi}q = \sqrt{\langle q^2 \rangle_{\psi} - \langle q \rangle_{\psi}^2}.$$

In our case, we know that for a potential well in which V = 0 in the range 0 < x < a, the eigenfunctions for this particular problem can be written as

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi x}{a}\right).$$

Knowing this, we are ready to calculate the expectation values of observables x,  $x^2$ , p and  $p^2$ .

$$\langle x \rangle = \int \psi_n^*(x) x \psi_n(x) \, \mathrm{d}x = \int_0^a \frac{2}{a} x \sin^2(n\pi x/a) \, \mathrm{d}x$$

$$= \frac{2}{a} \frac{a^2}{4} = \frac{a}{2},$$

$$\langle x^2 \rangle = \int \psi_n^*(x) x^2 \psi_n(x) \, \mathrm{d}x = \int_0^a \frac{2}{a} x^2 \sin^2(n\pi x/a) \, \mathrm{d}x$$

$$= \frac{2}{a} \frac{a^3}{6} \left( 1 - \frac{3}{2\pi^2 n^2} \right) = \frac{a^2}{3} \left( 1 - \frac{3}{2\pi^2 n^2} \right),$$

$$\langle p \rangle = \int \psi_n^*(x) (-i\hbar) \frac{\mathrm{d}}{\mathrm{d}x} \psi_n(x) \, \mathrm{d}x$$

$$= -i\hbar \frac{2}{a} \int_0^a \sin(n\pi x/a) n\pi/a \cos(n\pi x/a) \, \mathrm{d}x = 0,$$

$$\langle p^2 \rangle = \int \psi_n^*(x) (-\hbar^2) \frac{\mathrm{d}^2}{\mathrm{d}x^2} \psi_n(x) \, \mathrm{d}x = \hbar^2 \frac{2}{a} \frac{n^2 \pi^2}{a^2} \int_0^a \sin^2(n\pi x/a) \, \mathrm{d}x$$

$$= \hbar^2 \frac{2}{a} \frac{n^2 \pi^2}{a^2} \frac{a}{2} = \hbar^2 \pi^2 n^2/a^2$$

In the evaluation one needs partial integration and double angle formula:  $\sin^2 x = 1/2(1-\cos 2x)$ . Subtituting the above values into the definition for the uncertainty relation, we obtain that

$$\Delta x \Delta p = \frac{\hbar}{2} \sqrt{\frac{\pi^2 n^2 - 6}{3}} > \frac{\hbar}{2} \sqrt{\frac{3^2 n^2 - 6}{3}} > \frac{\hbar}{2} \sqrt{\frac{9 \cdot 1^2 - 6}{3}} = \frac{\hbar}{2}.$$

## 3. Show that

$$\langle p' | x | \alpha \rangle = i\hbar \frac{\partial}{\partial p'} \langle p' | \alpha \rangle$$
 and  $\langle \beta | x | \alpha \rangle = \int dp' \, \phi_{\beta}^{\star}(p') i\hbar \frac{\partial}{\partial p'} \phi_{\alpha}(p').$ 

**Solution:** Here we need the representation of eigenstate  $|x'\rangle$  in the momentum space

$$\langle p'|x'\rangle = \frac{1}{\sqrt{2\pi\hbar}} \exp\left(i\frac{p'x'}{\hbar}\right),$$

also we need the hermicity of x ( $\langle x'|x|\alpha\rangle = x'\langle x'|\alpha\rangle$ ) and the familiar differentation rule  $\partial(\exp(ax))\partial x = a\exp(ax)$ .

$$\langle p' | x | \alpha \rangle = \left\langle p' \left| \underbrace{\int dx' | x' \rangle \langle x' | x} \right| \alpha \right\rangle = \int dx' x' \langle p' | x' \rangle \langle x' | \alpha \rangle$$

$$= \int dx' x' \frac{1}{\sqrt{2\pi\hbar}} \exp\left(-i\frac{p'x'}{\hbar}\right) \langle x' | \alpha \rangle$$

$$= \int dx' i\hbar \frac{\partial}{\partial p'} \frac{1}{\sqrt{2\pi\hbar}} \exp\left(-i\frac{p'x'}{\hbar}\right) \langle x' | \alpha \rangle$$

$$= i\hbar \frac{\partial}{\partial p'} \left\langle p' \left| \int dx' | x' \rangle \langle x' | \alpha \right\rangle = i\hbar \frac{\partial}{\partial p'} \langle p' | \alpha \rangle$$

The second result is a corollary of the first one:

$$\langle \beta | x | \alpha \rangle = \left\langle \beta \left| \underbrace{\int dp' | p' \rangle \langle p' | x}_{I} \right| \alpha \right\rangle = \int dp' \langle \beta | p' \rangle \langle p' | x | \alpha \rangle$$

$$= \int dp' \phi_{\beta}^{\star}(p') i\hbar \frac{\partial}{\partial p'} \langle p' | \alpha \rangle$$

$$= \int dp' \phi_{\beta}^{\star}(p') i\hbar \frac{\partial}{\partial p'} \phi_{\alpha}(p').$$

4. Consider spin precession of electron in static uniform magnetic field in the z direction and calculate the expectation values of spin at time t in y and z directions when the initial state of the system at t = 0 is

$$|S_x;\uparrow\rangle = \frac{1}{\sqrt{2}}|S_z;\uparrow\rangle + \frac{1}{\sqrt{2}}|S_z;\downarrow\rangle.$$

## **Solution:**

We consider magnetic field to be  $\mathbf{B} = B\hat{z}$ , so that the Hamiltonian is written as

$$H = -\mu \mathbf{B}\mathbf{S} = -\left(\frac{eB}{m_e c}\right) S_z = \omega_c S_z.$$

The time evolution operator for this system is

$$\mathcal{U}(t,0) = \exp\left(-iS_z\omega_c t/\hbar\right).$$

where  $\omega_c = |e|B/m_e c$ . The expectation value for  $S_z$  is then calculated as follows

$$\langle S_{z} \rangle (t) = \langle S_{x}; \uparrow | \mathcal{U}^{\dagger}(t,0) S_{z} \mathcal{U}(t,0) | S_{x}, \uparrow \rangle$$

$$= \left[ e^{i\omega_{c}t/2} \langle S_{z}; \uparrow | + e^{-i\omega_{c}t/2} \langle S_{z}; \downarrow | \right] \frac{S_{z}}{2} \left[ e^{-i\omega_{c}t/2} | S_{z}; \uparrow \rangle + e^{i\omega_{c}t/2} | S_{z}; \downarrow \rangle \right]$$

$$= 0.$$

Calculating the expectation value of  $S_y$  is equivalent:

$$\langle S_{y}\rangle(t) = \langle S_{x};\uparrow | \mathcal{U}^{\dagger}(t,0)S_{y}\mathcal{U}(t,0)|S_{x},\uparrow \rangle$$

$$= \left[e^{i\omega_{c}t/2}\langle S_{z};\uparrow | + e^{-i\omega_{c}t/2}\langle S_{z};\downarrow |\right] \frac{S_{y}}{2} \left[e^{-i\omega_{c}t/2}|S_{z};\uparrow \rangle + e^{i\omega_{c}t/2}|S_{z};\downarrow \rangle\right]$$

$$= \left[e^{i\omega_{c}t/2}\langle S_{z};\uparrow | + e^{-i\omega_{c}t/2}\langle S_{z};\downarrow |\right] i\frac{\hbar}{4} \left[e^{-i\omega_{c}t/2}|S_{z};\downarrow \rangle - e^{i\omega_{c}t/2}|S_{z};\uparrow \rangle\right]$$

$$= \frac{\hbar}{2}\sin(\omega_{c}t).$$

It is trivial to see that spin precedes in the xy-plane with a frequency  $\omega_c$  and with no projection into the z axis.

Another and more straightforward way to calculate the expectation values is to apply the matrix representations of  $S_i$  derived in previous exercises and represent also the time dependent state in the eigenbasis of  $S_z$ .

$$|S_{x};\uparrow;t\rangle = \mathcal{U}(t,0) |S_{x};\uparrow;t=0\rangle = \begin{pmatrix} \frac{1}{2}e^{-i\omega_{c}t/2} \\ \frac{1}{2}e^{i\omega_{c}t/2} \end{pmatrix}$$

$$\langle S_{x}\rangle(t) = \langle S_{x};\uparrow;t|S_{z}|S_{x};\uparrow;t\rangle = \frac{\hbar}{2} \begin{pmatrix} \frac{1}{2}e^{i\omega_{c}t/2} & \frac{1}{2}e^{-i\omega_{c}t/2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{2}e^{-i\omega_{c}t/2} \\ \frac{1}{2}e^{i\omega_{c}t/2} \end{pmatrix} = 0$$

$$\langle S_{y}\rangle(t) = \langle S_{x};\uparrow;t|S_{z}|S_{x};\uparrow;t\rangle = \frac{\hbar}{2} \begin{pmatrix} \frac{1}{2}e^{i\omega_{c}t/2} & \frac{1}{2}e^{-i\omega_{c}t/2} \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2}e^{-i\omega_{c}t/2} \\ \frac{1}{2}e^{i\omega_{c}t/2} \end{pmatrix}$$

$$= \frac{\hbar}{2} \begin{pmatrix} \frac{1}{2}e^{i\omega_{c}t/2} & \frac{1}{2}e^{-i\omega_{c}t/2} \end{pmatrix} \begin{pmatrix} -\frac{i}{2}e^{i\omega_{c}t/2} \\ \frac{i}{2}e^{-i\omega_{c}t/2} \end{pmatrix} = \frac{\hbar}{2}\sin(\omega_{c}t)$$