7636225 ADVANCED QUANTUM MECHANICS Solutions 2 Spring 2010

1. Consider a three dimensional ket space. If a certain set of orthonormal kets, say |1),
|2) and |3) are used as the base kets, then the operators A and B are represented by

a 0 0 b 0 0
A= 0 —a 0 and B = 0 0 —b
0 0 —a 0 0

in which both a and b are real.
a) Obviously A exhibits a degenerate spectrum. Does B have a degenerate spectrum
as well?
b) Show that A and B commute.
¢) Find a new (orthonormal) set of base kets which are simultaneous eigenkets of both
A and B. Specify the eigenvalues of A and B for each of the three eigenkets. Does
your specification of eigenvalues completely characterize each eigenket?
Solution:
a) From the matrix representation of B we can see that the ket | 1) is an eigenvector
of operator B with eigenvalue b, i.e.

b 0 0 1 b 1
Bl1)={0 0 —ib 0 ]=(o0]=b[0]|=bl1).
0 ib 0 0 0 0

As the matrix of operator B is Hermitian so its eigenvalues must be real. It only
remains to diagonalize the minor My, of matrix B.

det (MH - )\I) = 0,
therefore
N+bvP=0 — X==b

We have found that the eigenvalues of B are {—b,b,b}, concluding that operator B
has a degenerate spectrum.
b) Let us calculate the products AB and BA independently.

a 0 O b 0 O ab 0 0
AB=| 0 —a 0 0 0 —b | = 0 0 dab |,

0 0 a 0 % 0 0 —tab O

b 0 0 a 0 O ab 0 0
BA=| 0 0 —ib 0 —a O = 0 0 dab

0 —tab O
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We are now in conditions of writing the commutator:
[A,B] = AB—- BA=0.

Therefore A and B must share a simultaneous set of eigenvectors.
¢) We already have the first of the eigenvector in that particular set, i.e. ket |1).
Let us find now the remaining eigenvectors of operator B in the subspace M.

e Eigenvector associated to eigenvalue b. Let us rename it as |2').

(5 ) (2)-()

{ —ib63 = bCQ

ibCQ = ng

Thus

— C3 = iCQ.

If we want our eigenvectors normalized, then ¢3 = ¢ = 1/2.

e Eigenvector associated to eigenvalue —b. Let us rename it as |3').
0 —ib Co . —bCQ
b0 cs )\ —bes

{ ing = bCQ

’ibCQ = — ng

Thus

— C3 = —iCQ.

If we want our eigenvectors normalized, then ¢3 = ¢ = 1/2.

We have to check that these new eigenvectors are shared with operator A.

a 0 0 1 0 1 0

A[2’> = 0 —a O — 1 = — —a :—a]2’>
0 0 —a \/§ 1 \/§ —ia
a 0 0 1 0 1 0

A|3’> = 0 —a O — 1 =— | —a :—a|3')
0 0 -—a V2 1 V2 ia

The primed notation (|1’)) is enough, but another and sure more informatic nam-
ing convecntion is to characterize the eigenvectors with their eigenvalues respect
operator A and B, respectively

1

|a,b) = [1) |—a,b) = —=(]2) +1[3)) |—a,—b) = %(|2> —i[3))
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2. Evaluate the uncertainty relation of x and p operators for a particle confined in an infinite
potential well (between two unpenetrable walls.) Some help: In this case the potential can
be written:V'(z) = 0, when 0 < x < a and otherwise V' = co. From quantum mechanics
we remember that the wave function in such a potential reads v, (z) = \/2/asin (n7z/a),
in which number n refers to the nth excitation while n = 1 is the ground state.

Solution: The uncertainty relation for x and p is given by the product of the stan-

dard deviations Ax and Ap, i.e., AxAp. The standard deviation for a generic observable
¢ in the system state ¢ is given by

Ay = /(%) — ()

In our case, we know that for a potential well in which V' = 0 in the range 0 < z < a,
the eigenfunctions for this particular problem can be written as

() = \/gsin ("%x) .

Knowing this, we are ready to calculate the expectation values of observables z, 22, p and

a

(x) = / 02 (2) 2y (z) do = /0 "2, sin(nr/a) de

() = / 0 ()% (z) d = /0 a%ﬁsin?(nm/@dx

- 35 () 5 ()
W) = [ i@ i) g da

2 a
= —ih—/ sin(mrx/a)mr/acos(mm/a) dz =0,

a
2 2 22” .2
(p*)y = /z/; —h*) —wn( )dx—h sin“(nrz/a) dx
B ,2n*n?a 22,22
B ha a? 2_h n/a

In the evaluation one needs partial integration and double angle formula: sin®z = 1/2(1—
cos 2z). Subtituting the above values into the definition for the uncertainty relation, we
obtain that

seao= T 0 T TS



3. Show that
Wlela) =ih(la)  and  (Blela) = [ apo500)in o)
8p A op
Solution: Here we need the representation of eigenstate |2’) in the momentum space
1 ' )
|’y = ex (1— ,
('l N A G

also we need the hermicity of z ((2 |z| @) = 2/(2'|a)) and the familiar differentation rule
J(exp(ax))dx = aexp(az).

<ﬁW®—<ﬂ/hfuwﬂxa>—/dwwmw@w>
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dx’ o'

\/_exp ( 'p/x,) (2| a)
—/dx'iha%\/%iexp( p >< |}
- iha% <p’ > oy 1

The second result is a corollary of the first one:

wmm=<6/®WﬁWMa>=/®WWMMM®
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4. Consider spin precession of electron in static uniform magnetic field in the z direction and
calculate the expectation values of spin at time ¢ in y and z directions when the initial
state of the system at t =0 is

1 1
Sx; = = Sz; + — Sz; .
1S2; 1) \/§| T) \/El 1)
Solution:
We consider magnetic field to be B = B2, so that the Hamiltonian is written as
B
H=-uBS = — (e >SZ=%5Z.
MeC

The time evolution operator for this system is
U(t,0) = exp (—iS,w.t/h),
where w. = |e|B/m.c. The expectation value for S, is then calculated as follows
(S0 = (ST (60U T)
= [ (ST e (8
= 0.

S

[T RS T ) + S L)

Calculating the expectation value of .S, is equivalent:

<Sy> (t) = <S:E;T ]UT(t,O)SyU(t,OHSx,T >

, A s A
— [ezwct/Q <SzaT | + e—zwct/Q <Sz;l |] ?y [ —zwct/2|SZ;T > + ezwct/2|Sz;l >]
h .
[ twet/2 <SzaT | + e—zwct/Q <Sz7l |] Z [ —zwct/2|SZ;l > o ezwct/lez;T >}
= gsm (wet) .

It is trivial to see that spin precedes in the zy-plane with a frequency w. and with no
projection into the z axis.

Another and more straightforward way to calculate the expectation values is to apply
the matrix representations of S; derived in previous exercises and represent also the time
dependent state in the eigenbasis of .5,.

le—iwct/Q
|Sx; T7t> = U(t, O) |SJ»" T;t - 0> (21 twet/2 )

€
1 0 1 —zwct/Z
(0 ) ( 1 zwct/Q =0
w —zw 0 I l iwet/2
(Feet/? gemieet/? (1 ) (21 zwct/2)

(Se)(t) = (Ses 15t 15:] Ses T3 t) =

(leiwet/2 1 7zwct/2
2

(Sy)(t) = (Se; 1 [S:] Sus 13 8) =

'Lwct/2

h .
i zwct/Q) = 2 Sln(wct)
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