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1 Complex Numbers

Complex numbers are a generalization of the real numbers. We write

z ∈ C, z = x + iy x, y ∈ R, i2 = −1.

In analogy to the real line we speak of the complex plane, denoting a complex number by
coordinates (Re(z), Im(z)).

Mathematical operations include

z1 + z2 = (x1 + x2) + i(y1 + y2), z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1).

The complex numbers with these operations are a field, which means that arithmetic works as
for the real numbers. We define complex conjugation and the modulus

z = x + iy → z∗ = x − iy, |z| =
√

z∗z =
√

x2 + y2.

Then we can write

z = |z| (cos(θ) + i sin(θ)) = |z|eiθ,

where θ is the phase or the argument θ = arg(z).
Assuming that the complex exponential function works as the real one (which it does, see

below), we have (De Moivre’s Theorem)

z1z2 = |z1||z2|ei(θ1+θ2),
√

|z|eiθ =
√

|z|eiθ/2.

Ex. z1 = 2 + i, z2 = 1 − 3i.

z1 + z2 = 3 − 2i, z1z2 = 5 − 5i, |z1| =
√

5, z1/z2 =
1

2
(1 − i), arg(z1) = tan−1(1/2).

1.1 Application 0

A polynomial of n’th order has exactly n complex roots (counted with multiplicity), ie solutions
zj , j = 1..n to

Pn(z) = a0z
n + a1z

n−1 + ... + an = 0

and the polynomial can be written as

Pn(z) = a0(z − z1)(z − z2)...(z − zn).

Ex. P2(z) = 2z2 + (4 − 2i)z − 4i = 0. z1 = i, z2 = −2.

What does it mean?

Complex numbers work like reals, except that they are not ordered along a line. Remembring
that i2 = −1, operations are like “multiplying out paranthesis” (x + iy). Complex numbers
have a real and an imaginary part, or equivalently a modulus and an argument.
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2 Complex functions

Consider a complex functions of complex variables, f : C → C. We can think of these in terms
of real functions of real variables,

f(z) → u(x, y) + iv(x, y), f = u + iv, z = x + iy u, v, x, y ∈ R.

It is also called a mapping or a tranformation.

3 Basic topology

Consider subsets B of the complex plane.
A neighbourhood of a point z0 is the set Nǫ(z0) = {z ∈ C : |z − z0| < ǫ}, for some ǫ.
A set B is open if for every point z in B, there exists a neighbourhood of z included in B.
A set is closed if its complement (in C) is open.
A point z0 is a limit point of B if every neighbourhood of z0 includes a point in B.
For a function f : B → C and z0 a limit point of B, we say that w0 is the limit of f as z

goes to z0, limz→z0
f(z), if

∀ǫ, ∃δ , so that f (Nδ(z0)) ⊂ Nǫ(w0).

Limits are unique and obey the usual properties,

lim
z→z0

(f(z) ± g(z)) = lim
z→z0

f(z) ± lim
z→z0

g(z),

lim
z→z0

(f(z)g(z)) =

(

lim
z→z0

f(z)

) (

lim
z→z0

g(z)

)

,

lim
z→z0

(f(z)/g(z)) =

(

lim
z→z0

f(z)

)

/

(

lim
z→z0

g(z)

)

.

In particular, for a complex function f = u + iv of z = x + iy,

lim
z→z0

f(z) = w0 ↔
[

lim
z→z0

u(x, y) = Re(w0) and lim
z→z0

v(x, y) = Im(w0)

]

.

3.1 Continuity

A function f : B → C is continuous at a point z0 if

lim
z→z0

f(z) = f(z0).

It is said to be continuous in a set B if it is continuous for all z ∈ B.
Continuous functions have the usual properties: if f1 and f2 are continuous over B, so are

f1 ± f2, f1f2 and f1/f2 (f2 6= 0). Also the composition f(g(z)) is continuous. We have for a
complex function f = u + iv of z = x + iy

f(z) continuous ↔ [u(z) and v(z) continuous] .

A path s(t) is a continuous function from an interval t ∈ [a, b] ⊂ R into C.

Ex. Straight line: s(t) = z0 + ct, z0, c ∈ C, t ∈ [a, b].
Ex. Circle: s(t) = z0 + reit, t ∈ [0, 2π], r > 0.
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Paths can be generalized to combinations of path segments, glued together at the ends. A
set B is path connected if any two points in B can be connected by a path completely in B. A
domain is a path connected open subset of the complex plane.

What does it mean?

Complex functions are defined like real ones, except that they map a plane onto a plane. At
this point, topology and continuity works as for real functions. But beware of points where the
functions are not defined, for one reason or another. These will become crucial later on. So
will paths, which will take the role that the real axis usually has for “integrating along”.

4 Power series

A complex sequence is a mapping f : N → C. We write f(n) = zn, n = 0, 1, 2, .... A sequence
is convergent and has the limit zl if ∀ǫ, ∃N , so that ∀n > N , zn ∈ Nǫ(zl). We then write
limn→∞ zn = zl. We have, with zn = xn + iyn and zl = xl + iyl,

lim
n→∞

zn = zl ↔
[

lim
n→∞

xn = xl and lim
n→∞

yn = yl

]

.

A sequence that is not convergent is divergent.

Theorem A sequence is convergent if and only if it is a Cauchy sequence:: Meaning that ∀ǫ
∃N , so that ∀m, n > N → |zn − zm| < ǫ.

Ex. zn = i
√

2 +
(

3−4i
6

)n
. |zm − zn|... < 2

(

5
6

)min(n,m) → 0.

From a sequence we can construct the partial sums sn =
∑n

m=0 zm. This defines a new
sequence sn. If it has a limit sl, we say that we have a convergent series

sl =
∞
∑

m=0

zm = lim
n→∞

n
∑

m=0

zm.

We of course have

sl = xl + iyl =

∞
∑

m=0

xm + i

∞
∑

m=0

ym,

and (c ∈ C)

∞
∑

m=0

(z1
m + z2

m) =

∞
∑

m=0

z1
m +

∞
∑

m=0

z2
m, c

∞
∑

m=0

zm =

∞
∑

m=0

czm.

If
∑ |zm| is convergent, we say that

∑

zm is absolutely convergent. Absolute convergence
implies normal convergence.

Theorem: If
∑

z1
n = z1

l and
∑

z2
n = z2

l are absolutely convergent, then
∑

z1
n

∑

z2
n = z1

l z2
l is

convergent.

Ex.
∑ in

n2 is convergent, since it is absolutely convergent.
∑ |zn| = 1

n2 = π2

6 .

4.1 Convergence tests

Comparison test: If
∑

m z1
m is absolutely convergent, and |z1

m| > r|z2
m| for m > N , for some

N and r > 0, then
∑

z2
m is absolutely convergent.
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Ratio test: Consider the case when limm→∞
|zm|

|zm−1|
= λ. If λ < 1 the series

∑∞
m=0 zm is

absolutely convergent. If λ > 1 it is divergent. If λ = 1 we don’t know.
We define a power series of z around z0 ∈ C with coefficients an by

∞
∑

n=0

an(z − z0)
n.

Theorem: If a power series converges for z = z1, then it converges absolutely for all z with
|z − z0| < |z − z1|. If it diverges for z = z1, then is diverges for all z with |z − z0| > |z − z1|.
The radius of convergence R is the supremum of |z| for the z for which the series converges.
The series is convergent for |z| < R and divergent for |z| > R. R can be zero or ∞.

For
∑

am(z − z0)
m, the radius of convergence is

R = lim
m→∞

|am−1/am|

if it exists. In general

1

R
lim sup |am|1/m.

Ex. The series
∑

zn has R = limm→∞ 1 = 1.
Ex. The series

∑ zn

n has R = limm→∞ n = ∞
We define

exp(z) =
∑ 1

n!
zn, cos(z) =

∑ (−1)n

(2n)!
z2n, sin(z) =

∑ (−1)n

(2n + 1)!
z2n+1.

Then we have the Euler formula

exp(iθ) = cos(θ) + i sin(θ),

and, as advertised, z = |z|ei arg(z). More on arg(z) later.

What does it mean?

It will turn out that a function has a power series expansion in some region around every point
where it is differentiable, the size of which is given by the radius of convergence. Therefore,
manipulation of series is very useful in dealing with complex functions. The same function can
have many power series, expanded around different points, and these may have different radii
of convergence. More about this later.

5 Differentiation

A function f : B → C is differentiable at z0 if

lim
z→z0

f(z) − f(z0)

z − z0
= f ′(z0)

exists and is the same when the limit is taken along any curve ending at z0. Higher derivatives
are defined in a similar way.

If f is differentiable at all points in (the open set) B we say that it is differentiable or
analytic or holomorphic or regular on B. Differentiable functions are continuous.
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Algebraic operations combine with differentiation in the usual way,

(f ± g)′ = f ′ ± g′, (fg)′ = f ′g + g′f (f/g)′ = (f ′g − g′f)/g2.

The chain rule applies,

(g(f(z0)))
′ = g′(f(z0))f

′(z0).

This also applies for complex functions of real variables, such as paths.

Theorem: For f(x + iy) = u(x, y) + iv(x, y), the Cauchy-Riemann equations

∂u

∂x
=

∂v

∂y
,

∂v

∂x
= −∂u

∂y
,

hold and all the partial derivatives are continuous, if and only if f(z) is differentiable.

Ex. f(z) = |z|2.

u(x, y) = x2 + y2, v(x, y) = 0 → ∂xu = 2x, ∂yu = 2y, ∂xv = ∂yv = 0.

Cauchy-Riemann equations are only satisfied and the derivatives continuous at z = 0. Hence
f is differentiable there and nowhere else.

The real and imaginary parts u(x, y), v(x, y are harmonic functions, obeying Laplace’s equa-
tion

∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2
= 0 =

∂2v(x, y)

∂x2
+

∂2v(x, y)

∂y2
.

Theorem: If f is differentiable in a domain D and f ′(z) = 0 everywhere in D, f is a constant.
If Ref , Imf or |f | is constant, f is constant.

Theorem Within the radius of convergence, |z − z0| < R (where the series is absolutely
convergent), we can take the derivative of a power series term by term,

(

∑

an(z − z0)
n
)′

=
∑

nan(z − z0)
n−1,

and the result is convergent. This applies also to any higher order derivative. Hence

an =
f (n)(z0)

n!
.

where f (n) denotes differentiation n times. This shows that the power series is in fact the Taylor
series,

f(z) =
∑ f (n)(z0)

n!
(z − z0)

n.

Turns out all complex differentiable functions can be expressed as power series, and infinitely
differentiable and integrable. More about this later.

Ex. f(z) = 1
1−z =

∑

n zn. The series has radius of convergence R = 1. Then

f ′(z) =
∑

n

nzn−1 =
1

(1 − z)2
.
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Taylor expansion around z0 = 0,

f(0) = 1, f ′(0) = 1, f ′′(0) = 2, f (3)(0) = 6, f (4)(0) = 24, ... f (n)(0) = n!.

f(z) =
∑

n

f (n)

n!
(z − z0)

n =
∑

n

zn.

Around z0 = 2?

f (n) = n!(−1)n+1, f(z) =
∑

n

f (n)

n!
(z − z0)

n =
∑

n

(−1)n+1(z − 2)n, R = lim
n→∞

1 = 1.

Around z0 = −1?

f (n) =
n!

2n+1
, f(z) =

∑

n

f (n)

n!
(z − z0)

n =
∑

n

1

2n+1
(z + 1)n, R = lim

n→∞
2 = 2.

What does it mean?

The definition of differentiability restricts functions to a fairly small subset, represented by
the Cauchy-Riemann equations. On the other hand, once a function is known to be complex
differentiable, we also know that it has a power series expansion, is infinitely many times
differentiable and that the real and imaginary parts are harmonic funtions. Differentiation can
for instance be done term by term in the power series, which turns out to be the Taylor series.
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