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1 The concept of a Green’s function
Consider the standard solution to a linear second order ODE;,
a(x)y”(z) + b(x)y () + c(x) = r(z),  y(@) =yn(z) + yp(2),
where the homogeneous set of solutions is
Yn(x) = c1y1(x) + caya(x),

in terms of two linearly independendent solutions 1, y2, and the particular solution

() = —n(e) [T 4 (o) [T g,

with the Wronskian W (x) = y1(2)vy4(z) + ya(x)y] (z). We can write this as

yp(x) = /G(x,x’)r(m')dm’, G(z,2') = —yl(;f/)(y;,()x/) + yg(xmf)(y;/()x')’

and we call G(z,2') the Green’s function for the differential operator.

The Greens function is a two-point function, and viewed as a function of its first argument, it
solves the homogeneous differential equation

D(a) = (ale) gz + (o) + (o)) Gloi) =0, 5 2.

It is continuous everywhere, also at © = y. Its derivative is discontinuous at x = y with a jump
G'(x,2%) - G (z,27) = —1.
It is symmetric G(x,y) = G(y, x). It satisfies the boundary condition
G(z,0) = G(z,l) =0.

But we also have

w) = [ @G = [ CD@UE)GE =+ [ we) DGy
which means that
D(2)G(z,y) = d(x —y).
Or, think of a general linear operator L acting on vectors u, f in a vector space V,
Lu=—f — u=-L"1f,

in terms of the inverse operator LL™! = 1.



2 Finite dimension and linear operators

Consider a finite dimensional vector space V' of dimension n. Any set of n linearly independent
vectors v; forms a basis for the vector space, and we can write for any other vector u,

u = Z CiU;.
i
Let’s specialise to an inner product space, with an “dot” product (u, v), which maps two vectors
to a complex number. It is linear in the first variable
(auy + buz,v) = auy,v) + b(us, v),
and conjugate linear in the second variable
(u, avy + bvg) = a*(u,v1) + b*(u, v3).
Then we can define the norm of a vector
vl =V (v,0).
We can also define orthogonal vectors to be u and v, for which
(u,v) = 0.

One can always find a basis of vectors, which is at the same time orthogonal and has norm 1,
ie is orthonormal. Assume e;, i =0, ..,n is such a basis.

Then for any vector, we have

v = Zciei, ci=(v,6), — wv= Z(v,ei)ei.
i i
In this way, we can define an isomorphism between V and the Euclidean, complex vector space
cn by
v —  (c1,¢2,C3, .y Cp).
So in this sense the only finite dimensional inner prodct spaces are C™.

For infinite dimensional inner product spaces, all of the above holds, except the isomorphism
mapping. Infinite dimensional vector spaces have a more varied structure. They include: a)
C, the space of continuous functions, b) C!, the space of continuously differentiable functions,
¢) C* the space of infinitely many times differentiable (or analytic) functions, d) Ls|a, b], the
space of square integrable functions on some interval [a, b].

2.1 Linear transformations

A linear transformation or operator is a mapping L from V to V for which we have

L(auy + bug) = aL(u1) + bL(us2).

With v = Lv, we have that

U= Zdiei = chjej = chL(eﬂ')
[ J J



And so
di = cj(L(ej) ),
J

which is the Euclidean matrix-vector equation
u; = Mijv;,  Mi; = (L(e;), €).

In other words, to describe any linear transformation, we only need to know how it acts on a
set of basis vectors. This applies to finite and infinite dimensional spaces alike.

A linear operator L is said to be bounded if there is an M so that for all vectors v,

|L(v)| < M|v|.
Bounded linear operators constitute a vector space themselves. There is a one-to-one mapping
between bounded linear operators on R™ and the space of n-dimensional matrices, even for n
going to infinity.
2.2 Eigenvalues and eigenvectors
An operator may have eigenvectors u,, and eigenvalues \,, with

L(un) = Anunp.

FEigenvectors with different eigenvalues are mutually linearly independent, and so V splits up
into sub-spaces of lower dimensions, one for each distinct eigenvalue. The dimensionalities of
these subspaces adds up to n. As a consequence, if all eigenvalues are distinct, the eigenvectors
are all linearly independent, and therefore constitute a basis for V.

An operator L has an inverse L™!, if and only if it has no zero eigenvalues
L(u)=0, — u=0.

This is the analogue of a matrix being invertible only if it has non-zero determinant. Remember
that the determinant of a matrix is the product of its eigenvalues.

(51)

has eigenvalues 1 &4 and eigenvectors (1,7), (1, —¢). These are linearly independent, but not
orthogonal, so they are a basis for the space R2. The determinant is 2, and so the inverse exists

and is
1 1 -1
2\1 1 ’

An operator L on a real vector space is symmetric if

(L(v),u) = (v, L(w)).

For a complex vector space, the analogue is a Hermitian or self-adjoint operator, which has

(L(v),u) = (v, L(u))*.

Ex.: The matrix



If L is symmetric/Hermitian/self-adjoint, the eigenvectors or distinct eigenvalues are orthogo-
nal, and so V has an orthonormal basis of eigenvectors of L. The eigenvalues are real.

1 1

1 -1
has real eigenvalues 41/2, and eigenvectors (1,1 —+/2), (1,14 v/2). These are orthogonal (and
can easily be normalised), and so form a basis for the space R?. The inverse matrix exists and

is

171 1

2 1 -1/
Ex.: Consider a symmetric operator with n distinct eigenvalues. Then use the set of eigenvec-
tors as the basis, and we have

L(v) = ZciL(ei) = Z(U, ei)Aie;.

%

Ex.: The symmetric matrix

Ex.: Consider the operator that projects on the basis vector ey,

L(v) = Z Ai(v, €;)ei, Ai = 0i1.

It is linear and is written in terms of its eigenvectors. There are two distinct eigenvalues 1 and
0 (many times...).

3 Integral and differential operators

For our purposes, we should think of infinite dimensional vector spaces as spaces of functions
v = f(x), defined in some domain D € C". Although it doesn’t have to be the case in general,
we will think of the Hilbert space La[a,b] of (complex) square integrable functions on a finite
or infinite interval. with the inner product and norm

1 b 1 b 1/2
(f,g)zm/ drfg*, Ifl = <m/ dxff*) :

Generalisation to more spatial dimensions is straightforward.

3.1 Integral operators

We define the linear operator with the integration kernel K(x,y) as

b
h(x) = K f(x) = / K(z,9)f (5)dy.

Integration is a linear operation and so we have

b b b
/ K(2,) (cf (v) + dg(y)) dy = ¢ / K(z,9)f(y)dy + d / K(z,y)9(y)dy.



We define the unique adjoint operator K* or KT

b
K*f(z) = / K@) fwdy — (Kf.g)=(fK"g).

An integral operator is symmetric or Hermitian if K* = K. If it is real, this simply means for
the kernel K (z,y) = K(y,x), if it is complex, we have instead K (z,y) = K(y,x)*. An integral
operator can also have eigenvalues and eigenvectors. The eigenvectors of a Hermitian operator
with distinct eigenvalues are orthogonal.

A kernel is said to be symmetrically separable if for some functions h;(x), we can write

K(z,y) = Z cijhi(z)h;(y).

The corresponding integral operator has a set of orthonormal eigenvectors f;(z) with non-zero
eigenvalues ;. If g(z) is orthogonal to all f;, Kg(xz) = 0. Each eigenspace is finite dimensional.
If K has no other eigenvectors with non-zero eigenvalues, then

K(z,y) = Z/\jfj(x)fj(y%

which is exactly the analogue of having diagonalised the corresponding matrix, by expanding
on the eigenbasis.

3.2 Differential operators
Differentiation is a linear operation, since

d

2 (0f (@) + bg() = ae- (@) + b g(a)

So we can define a linear operator of the type

dn+m
L= Jreem ) G
iy

where x; are the various spatial dimensions and time, and we allow for partial derivatives mixed
derivatives etc. In practice, we will concentrate on up to 3+1 space-time dimensions and up to
second derivatives.

We are interested in differential equations of the type
Lu(z) = f(z) — wu(x)=L"'f(z), L7'L=1.

and wish to find the Green’s function L~! to a given differential operator L.
Ex.: Invert d?/dz?. We have
d2
@G(x,t) = d(x, ).

We use the Heaviside function H'(x) = §(x) to perform one integration

%G(m,t) = H(z —1t) + at),



with a(t) some function. Integrating again, we have
G(z,t) = (x —t)H(z — t)dx + za(t) + 5(2).
Now we want to solve the equation

d2
dz?

u(z) = f(x),

with Dirichlet boundary conditions u(0) = u(1) = 0, and we have

u(z) = /G(x,t)f(t)dt = /j (x —t)f(t)dt + x/oo at)f(t)dt + /700 B(t) f(t)dt.

Boundary conditions impose

0 o
0:—/ tf(t)dt+/ B(t) f(t)dt,

—o0o —o0

- [ a-oswas [ () f(yd + / T B0,
— B(t) = tH(—t), —at)=—-1+tH(t), t€]—o0,1], 0, te]l,o0l
so that finally
Gz, t) =(x—t)H(z —t) — (1 —1).

We see that the kernel satisfies the boundary conditions in the variable x. This is a general
result.



