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1 The concept of a Green’s function

Consider the standard solution to a linear second order ODE,

a(x)y′′(x) + b(x)y′(x) + c(x) = r(x), y(x) = yh(x) + yp(x),

where the homogeneous set of solutions is

yh(x) = c1y1(x) + c2y2(x),

in terms of two linearly independendent solutions y1, y2, and the particular solution

yp(x) = −y1(x)

∫

y2(x
′)r(x′)

W (x′)
dx′ + y2(x)

∫

y1(x
′)r(x′)

W (x′)
dx′,

with the Wronskian W (x) = y1(x)y′
2(x) + y2(x)y′

1(x). We can write this as

yp(x) =

∫

G(x, x′)r(x′)dx′, G(x, x′) = −y1(x)y2(x
′)

W (x′)
+

y2(x)y1(x
′)

W (x′)
,

and we call G(x, x′) the Green’s function for the differential operator.

The Greens function is a two-point function, and viewed as a function of its first argument, it
solves the homogeneous differential equation

D(x) =

(

a(x)
d2

dx2
+ b(x)

d

dx
+ c(x)

)

G(x, y) = 0, x 6= y.

It is continuous everywhere, also at x = y. Its derivative is discontinuous at x = y with a jump

G′(x, x+) − G′(x, x−) = −1.

It is symmetric G(x, y) = G(y, x). It satisfies the boundary condition

G(x, 0) = G(x, l) = 0.

But we also have

u(y) =

∫ l

0

f(x)G(x, y)dx =

∫ l

0

(−D(x)U(x)))G(x, y)dx = +

∫ l

0

u(x)(D(x)G(x, y))dx

which means that

D(x)G(x, y) = δ(x − y).

Or, think of a general linear operator L acting on vectors u, f in a vector space V ,

Lu = −f → u = −L−1f,

in terms of the inverse operator LL−1 = 1.
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2 Finite dimension and linear operators

Consider a finite dimensional vector space V of dimension n. Any set of n linearly independent
vectors vi forms a basis for the vector space, and we can write for any other vector u,

u =
∑

i

civi.

Let’s specialise to an inner product space, with an “dot” product (u, v), which maps two vectors
to a complex number. It is linear in the first variable

(au1 + bu2, v) = a(u1, v) + b(u2, v),

and conjugate linear in the second variable

(u, av1 + bv2) = a∗(u, v1) + b∗(u, v2).

Then we can define the norm of a vector

|v| =
√

(v, v).

We can also define orthogonal vectors to be u and v, for which

(u, v) = 0.

One can always find a basis of vectors, which is at the same time orthogonal and has norm 1,
ie is orthonormal. Assume ei, i = 0, .., n is such a basis.

Then for any vector, we have

v =
∑

i

ciei, ci = (v, ei), → v =
∑

i

(v, ei)ei.

In this way, we can define an isomorphism between V and the Euclidean, complex vector space
Cn by

v → (c1, c2, c3, ..., cn).

So in this sense the only finite dimensional inner prodct spaces are Cn.

For infinite dimensional inner product spaces, all of the above holds, except the isomorphism
mapping. Infinite dimensional vector spaces have a more varied structure. They include: a)
C, the space of continuous functions, b) C1, the space of continuously differentiable functions,
c) C∞ the space of infinitely many times differentiable (or analytic) functions, d) L2[a, b], the
space of square integrable functions on some interval [a, b].

2.1 Linear transformations

A linear transformation or operator is a mapping L from V to V for which we have

L(au1 + bu2) = aL(u1) + bL(u2).

With u = Lv, we have that

u =
∑

i

diei = L
∑

j

cjej =
∑

j

cjL(ej)
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And so

di =
∑

j

cj(L(ej), ei),

which is the Euclidean matrix-vector equation

ui = Mijvj , Mij = (L(ej), ei).

In other words, to describe any linear transformation, we only need to know how it acts on a
set of basis vectors. This applies to finite and infinite dimensional spaces alike.

A linear operator L is said to be bounded if there is an M so that for all vectors v,

|L(v)| < M |v|.

Bounded linear operators constitute a vector space themselves. There is a one-to-one mapping
between bounded linear operators on Rn and the space of n-dimensional matrices, even for n
going to infinity.

2.2 Eigenvalues and eigenvectors

An operator may have eigenvectors un and eigenvalues λn, with

L(un) = λnun.

Eigenvectors with different eigenvalues are mutually linearly independent, and so V splits up
into sub-spaces of lower dimensions, one for each distinct eigenvalue. The dimensionalities of
these subspaces adds up to n. As a consequence, if all eigenvalues are distinct, the eigenvectors
are all linearly independent, and therefore constitute a basis for V .

An operator L has an inverse L−1, if and only if it has no zero eigenvalues

L(u) = 0, → u = 0.

This is the analogue of a matrix being invertible only if it has non-zero determinant. Remember
that the determinant of a matrix is the product of its eigenvalues.

Ex.: The matrix
(

1 1
−1 1

)

has eigenvalues 1 ± i and eigenvectors (1, i), (1,−i). These are linearly independent, but not
orthogonal, so they are a basis for the space R2. The determinant is 2, and so the inverse exists
and is

1

2

(

1 −1
1 1

)

.

An operator L on a real vector space is symmetric if

(L(v), u) = (v, L(u)).

For a complex vector space, the analogue is a Hermitian or self-adjoint operator, which has

(L(v), u) = (v, L(u))∗.
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If L is symmetric/Hermitian/self-adjoint, the eigenvectors or distinct eigenvalues are orthogo-
nal, and so V has an orthonormal basis of eigenvectors of L. The eigenvalues are real.

Ex.: The symmetric matrix

(

1 1
1 −1

)

has real eigenvalues ±
√

2, and eigenvectors (1, 1−
√

2), (1, 1 +
√

2). These are orthogonal (and
can easily be normalised), and so form a basis for the space R2. The inverse matrix exists and
is

1

2

(

1 1
1 −1

)

.

Ex.: Consider a symmetric operator with n distinct eigenvalues. Then use the set of eigenvec-
tors as the basis, and we have

L(v) =
∑

i

ciL(ei) =
∑

i

(v, ei)λiei.

Ex.: Consider the operator that projects on the basis vector e1,

L(v) =
∑

λi(v, ei)ei, λi = δi1.

It is linear and is written in terms of its eigenvectors. There are two distinct eigenvalues 1 and
0 (many times...).

3 Integral and differential operators

For our purposes, we should think of infinite dimensional vector spaces as spaces of functions
v = f(x), defined in some domain D ∈ Cn. Although it doesn’t have to be the case in general,
we will think of the Hilbert space L2[a, b] of (complex) square integrable functions on a finite
or infinite interval. with the inner product and norm

(f, g) =
1

b − a

∫ b

a

dxfg∗, |f | =

(

1

b − a

∫ b

a

dxff∗

)1/2

.

Generalisation to more spatial dimensions is straightforward.

3.1 Integral operators

We define the linear operator with the integration kernel K(x, y) as

h(x) = Kf(x) =

∫ b

a

K(x, y)f(y)dy.

Integration is a linear operation and so we have

∫ b

a

K(x, y) (cf(y) + dg(y)) dy = c

∫ b

a

K(x, y)f(y)dy + d

∫ b

a

K(x, y)g(y)dy.
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We define the unique adjoint operator K∗ or K†

K∗f(x) =

∫ b

a

K∗(x, y)f(y)dy → (Kf, g) = (f, K∗g).

An integral operator is symmetric or Hermitian if K∗ = K. If it is real, this simply means for
the kernel K(x, y) = K(y, x), if it is complex, we have instead K(x, y) = K(y, x)∗. An integral
operator can also have eigenvalues and eigenvectors. The eigenvectors of a Hermitian operator
with distinct eigenvalues are orthogonal.

A kernel is said to be symmetrically separable if for some functions hi(x), we can write

K(x, y) =
∑

ij

cijhi(x)hj(y).

The corresponding integral operator has a set of orthonormal eigenvectors fi(x) with non-zero
eigenvalues λi. If g(x) is orthogonal to all fi, Kg(x) = 0. Each eigenspace is finite dimensional.
If K has no other eigenvectors with non-zero eigenvalues, then

K(x, y) =
∑

j

λjfj(x)fj(y),

which is exactly the analogue of having diagonalised the corresponding matrix, by expanding
on the eigenbasis.

3.2 Differential operators

Differentiation is a linear operation, since

d

dx
(af(x) + bg(x)) = a

d

dx
f(x) + b

d

dx
g(x).

So we can define a linear operator of the type

L =

(

fn+m(x)
dn+m

dxn
i dxm

j

)

where xi are the various spatial dimensions and time, and we allow for partial derivatives mixed
derivatives etc. In practice, we will concentrate on up to 3+1 space-time dimensions and up to
second derivatives.

We are interested in differential equations of the type

Lu(x) = f(x) → u(x) = L−1f(x), L−1L = 1.

and wish to find the Green’s function L−1 to a given differential operator L.

Ex.: Invert d2/dx2. We have

d2

dx2
G(x, t) = δ(x, t).

We use the Heaviside function H ′(x) = δ(x) to perform one integration

d

dx
G(x, t) = H(x − t) + α(t),
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with α(t) some function. Integrating again, we have

G(x, t) = (x − t)H(x − t)dx + xα(t) + β(t).

Now we want to solve the equation

d2

dx2
u(x) = f(x),

with Dirichlet boundary conditions u(0) = u(1) = 0, and we have

u(x) =

∫

G(x, t)f(t)dt =

∫ x

−∞

(x − t)f(t)dt + x

∫ ∞

−∞

α(t)f(t)dt +

∫ ∞

−∞

β(t)f(t)dt.

Boundary conditions impose

0 = −
∫ 0

−∞

tf(t)dt +

∫ ∞

−∞

β(t)f(t)dt,

0 =

∫ 1

−∞

(1 − t)f(t)dt +

∫ ∞

−∞

α(t)f(t)dt +

∫ ∞

−∞

β(t)f(t)dt,

→ β(t) = tH(−t), → α(t) = −1 + tH(t), t ∈] −∞, 1], 0, t ∈ [1,∞[.

so that finally

G(x, t) = (x − t)H(x − t) − x(1 − t).

We see that the kernel satisfies the boundary conditions in the variable x. This is a general
result.
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