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1 Singularities

1.1 Zeros
A zero zp of f: D — C is where f(z9) = 0. With

F2) =S au(z - z0)",

a zero has finite order m if a,,, # 0 but a; = 0, i < m. A zero is isolated is it has a neighbourhood
with no other zeros. A zero of finite order is isolated.

Theorem: If f is differentiable in D and there exists a set of zeros with a limit point z¢ in D,
then f is zero in all of D.

Identity theorem: If f and g are differentiable and f(z) = ¢g(z) on a set with a limit point
in the domain D, the f = g throughout D.
g: D — Cis an extension functionof f: SC D —Cif f=gin S.

Ex.

is an extension function of

f2)=Y"2" [zl <1
Ex. f(z) =sin(z), z € C is the only differentiable extension of f(z) = sin(z), z € R.

1.2 Extrema

Because complex numbers are not ordered, we cannot speak of f(z1) < f(z2). We can however
consider the modulus |f(z)| > 0 of the function. A local maximum (minimum) of a complex
function is a point zg so that |f(z)| < (>)|f(z0)| when |z — zo| < € for some e.

Theorem: If a differentiable function has a maximum in a domain, the function is constant in
that domain. If a non-zero differentiable function has a minimum in a domain, the function is
constant in that domain.

Theorem: If a differentiable function is not constant, the maximum of its modulus occurs
on the boundary of the set. If a differentiable function is not constant, the minimum of its
modulus occurs on the boundary or where the function is zero.

Ex. f(z) = 2% on |z] < 1. |f(2)] = 22 4+ y?, maximum on boundary |z| = 1 and minimum at
z=0.



1.3 Laurent series and isolated singularities

We can generalise the concept of a power series to include negative powers and represent a
function by

o0

flz)= Z en(z — 20)".

n=—oo

A normal (n >) power series converges inside some radius Rz, and a n < 0 power series
converges outside some other radius R;. In case Ry > Rj, there is an annulus, where both
converge.

Laurent’s Theorem: If f is differentiable in an annulus 0 < Ry < |z — 20| < Ry < 00, there
exists a Laurent series

f(z0+h) = Zanh”+2b ™,

with 0 Ja,h™ convergent for |h| < Ry and Y, byh™™ converges for |h| > R;y. Using the
contour s(t) =z + re', t € [0,27], Ry <r < Ra, we have

an = 2m./(z_20)n+1d bn 2m/f (z = 20)" "dz.

In practice, we will not use these integrals to calculate whole Laurent series. Note that the
coeflicients are not the derivatives as for the Taylor series.

Ex. For z #£ 0,
f(z):ez—i—el/Z:Z——i—Z em =1/ml, c_py =1/ml; ¢y =2.
n=0 !
Ex. For 0 < |z| < 1,
1 1 -
- - = nn) n:1
fe)=-+1— ng;lcz c
Ex. For 1 < |z| <2
1 1 1
= - = n< n =1, ¢ =2
L e S e 2 R 1—z/2 ZC <0 En20

n=—oo

The Laurent expansion allows us to categorize singularities. If f is differentiable everywhere
but at some point zp, so for the annulus 0 < |z — 29| < R for some R, we say that zp is an
isolated singularity. We can write down the Laurent series giving the coefficients b, (of the
negative power terms). If
all b,, = 0, we have a removable singularity, and we can set f(zg) = ag. If

a finite number, m, of the b,, # 0, we have a pole of order m at zg. If

infinitely many b,, # 0, we have an isolated essential singularity.

Ex. f(z) =sin(z)/z, z # 0 has the Laurent expansion f(z —z9) = 1 — 22/3!+2%/5! — ... With
f(z0) =1 f is differentiable in C.



Ex. f(z) =sin(z)/z%, 2z # 0 has the Laurent expansion f(z —z9) = 1/23 — 2/3! + 2/5! — ... Tt
has a 3rd order (¢riple) pole at zg = 0.

Ex. f(z) =sin(1/2), z # 0 has the Laurent expansion f(z — z9) = 1/z — 1/233! + 1/2°5! — ...
It has an isolated essential singularity at zo = 0.

Theorem: For f differentiable in 0 < |z — 29| < R, the statements a)zo is a removable
singularity; b) lim,_,,, f(z) < oo; ¢) f is bounded in a neighbourhood of zg; are equivalent.

Therefore if zp is not a removable singularity, b, # 0 for some n, f is unbounded in any
neighbourhood of zy (“goes to infinity at the singularity”).

Theorem: For f differentiable in 0 < |z — 29| < R it has a pole of order m if and only if

lim (z — 20)" f(2) =1#0, < oo,

zZ—2z0

since in that case the limiting operation picks up the b,, coefficient = [.
Theorem: f has a pole of order m at z if and only if 1/f has a zero of order m there.
Theorem: If f has pole at zg, then lim,_,,, | f(z)] = co (modulus is singular at a singularity).

Weierstrass-Casorati-Poincare Theorem: In every neighbourhood of an essential singu-
larity, f takes on all values in C except at most one(!)

What is going on? Consider the integral of a Laurent series around the closed loop s(t) =
20 +rett, t € [0,27], in the case of an isolated singularity at zo. Compute first for all integers n

1 27 . it . 27T )
/7612 :/ T g = —— / ¢t =0, n#£1.
s (Z _ Z())n 0 rneint rn— 0

If n = 1 we instead have

/S(#dz = ny(s,20) = 1.

z—2p)t

For positive powers

/(z —20)"dz =0

S

because the function is differentiable. Therefore,

[ = [ 2=

In order to extract the other coefficients, we need to multiply by the appropriate power of
(Z - ZO))

dz + 0 = 27ming, (s, z0)by = 2mwiby.

/f(z)(z —29)"dz = / bn—+1dz + 0 =27miby41.

s © — R0

And

/f(z)(z —z9) "dz = / Il gp 1 0= 27 iap—1.

zZ— 20



1.4 Infinity

We can extend C with the point co by mapping the complex plane onto a sphere. The point
oo is then the North Pole (not to be confused with a singularity-type pole). We can think of
{#z : |z| > R} as a neighbourhood around oo and define continuity and differentiability. For
f(2) differentiable for |z| > R, we say that f has a removable or isolated essential singularity
or pole of order m at oo, if g(z) = f(1/z), 0 < |z| < 1/R, has such a singularity at z = 0.
Similarly, we say that f has a zero of order m at oo if g has it at z = 0.

Ex. f(z) =1/z,|z| > 0. g(z) = z, |z| > 0 has a removable singularity at z = 0, and so f has a
removable singularity at oo.

Ex. f(z) =z. g(2) = 1/z, |z| > 0 has single pole at z = 0, and so f has a single pole at co.
Ex. f(z) = e?*. g(z) = e'/#, |z| > 0 has an isolated essential singularity at z = 0, and so f has
an isolated essential singularity at oco.

Ex. f(z) = 1/sin(z), z # nm, n € Z. g(z) = 1/sin(1/z)). Doesn’t work, since f is not
differentiable for |z| > R for any R. There are infinitely many isolated singularities of f as
z — oo (or of g as z — 0). We say that f has an essential singularity at co.

A function is said to be meromorphic in a domain D if it is differentiable everywhere in D
except at poles. Meromorphic functions on the extended complex plane can always be written
as rational functions (a fraction of two polynomials). This is not the case in the un-extended
complex plane.

What does it mean: We have finally extended the boring differentiable functions to
meromorphic functions, a much broader class. Poles are singularities where the function “goes
to infinity” as a particular power (z — z¢)™, encoded in the coefficient of the leading order term
(the one with the largest negative power) in the corresponding Laurent series. It is no longer
a Taylor series and we cannot extract the coefficients by simple differentiation.

2 Residues

We define the residue at a point zg in terms of the Laurent series,

f(z0+h) = Zanh”+2b ™,

by (with s(t) = zo + 7€', t € [0,27])

res(f,z0) = b1 = 2m/f

We define a simple loop to be a closed contour in a domain D for which all points either have
winding number 0 or 1. We then have the crucial

Cauchy’s Residue Theorem: Let s be a simple loop in a domain D and f differentiable
everywhere except at a finite number of isolated singularities, z,, r = 1,2,..,n, all inside s.
Then

/f(z)dz = 27i Zres(f, Zr)-



