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1 Singularities

1.1 Zeros

A zero z0 of f : D → C is where f(z0) = 0. With

f(z) =
∑

n

an(z − z0)
n,

a zero has finite order m if am 6= 0 but ai = 0, i < m. A zero is isolated is it has a neighbourhood
with no other zeros. A zero of finite order is isolated.

Theorem: If f is differentiable in D and there exists a set of zeros with a limit point z0 in D,
then f is zero in all of D.

Identity theorem: If f and g are differentiable and f(z) = g(z) on a set with a limit point
in the domain D, the f = g throughout D.

g : D → C is an extension function of f : S ⊂ D → C if f = g in S.

Ex.

f(z) =
1

1 − z
, z 6= 1

is an extension function of

f(z) =
∑

n

zn, |z| < 1

Ex. f(z) = sin(z), z ∈ C is the only differentiable extension of f(x) = sin(x), x ∈ R.

1.2 Extrema

Because complex numbers are not ordered, we cannot speak of f(z1) < f(z2). We can however
consider the modulus |f(z)| > 0 of the function. A local maximum (minimum) of a complex
function is a point z0 so that |f(z)| ≤ (≥)|f(z0)| when |z − z0| < ε for some ε.

Theorem: If a differentiable function has a maximum in a domain, the function is constant in
that domain. If a non-zero differentiable function has a minimum in a domain, the function is
constant in that domain.

Theorem: If a differentiable function is not constant, the maximum of its modulus occurs
on the boundary of the set. If a differentiable function is not constant, the minimum of its
modulus occurs on the boundary or where the function is zero.

Ex. f(z) = z2 on |z| ≤ 1. |f(z)| = x2 + y2, maximum on boundary |z| = 1 and minimum at
z = 0.
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1.3 Laurent series and isolated singularities

We can generalise the concept of a power series to include negative powers and represent a
function by

f(z) =

∞∑
n=−∞

cn(z − z0)
n.

A normal (n ≥) power series converges inside some radius R2, and a n < 0 power series
converges outside some other radius R1. In case R2 > R1, there is an annulus, where both
converge.

Laurent’s Theorem: If f is differentiable in an annulus 0 ≤ R1 ≤ |z − z0| ≤ R2 ≤ ∞, there
exists a Laurent series

f(z0 + h) =

∞∑
n=0

anhn +

∞∑
n=1

bnh−n,

with
∑∞

n=0 anhn convergent for |h| < R2 and
∑∞

n=1 bnh−n converges for |h| > R1. Using the
contour s(t) = z0 + reit, t ∈ [0, 2π], R1 < r < R2, we have

an =
1

2πi

∫
s

f(z)

(z − z0)n+1
dz, bn =

1

2πi

∫
s

f(z)(z − z0)
n−1dz.

In practice, we will not use these integrals to calculate whole Laurent series. Note that the
coefficients are not the derivatives as for the Taylor series.

Ex. For z 6= 0,

f(z) = ez + e1/z =
∞∑

n=0

zn

n!
+

∞∑
n=0

z−n

n!
, cm = 1/m!, c−m = 1/m!, c0 = 2.

Ex. For 0 < |z| < 1,

f(z) =
1

z
+

1

1 − z
=

∞∑
n=−1

cnzn, cn = 1.

Ex. For 1 < |z| < 2,

f(z) =
1

z − 1
−

1

z − 2
=

1

z(1− 1/z)
+

1

2(1 − z/2)
=

∞∑
n=−∞

cnzn, cn<0 = 1, cn≥0 = 2−m−1.

The Laurent expansion allows us to categorize singularities. If f is differentiable everywhere
but at some point z0, so for the annulus 0 < |z − z0| < R for some R, we say that z0 is an
isolated singularity. We can write down the Laurent series giving the coefficients bn (of the
negative power terms). If

all bn = 0, we have a removable singularity, and we can set f(z0) = a0. If

a finite number, m, of the bn 6= 0, we have a pole of order m at z0. If

infinitely many bn 6= 0, we have an isolated essential singularity.

Ex. f(z) = sin(z)/z, z 6= 0 has the Laurent expansion f(z− z0) = 1− z2/3!+ z4/5!− .... With
f(z0) = 1 f is differentiable in C.
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Ex. f(z) = sin(z)/z4, z 6= 0 has the Laurent expansion f(z − z0) = 1/z3 − z/3! + z/5!− .... It
has a 3rd order (triple) pole at z0 = 0.

Ex. f(z) = sin(1/z), z 6= 0 has the Laurent expansion f(z − z0) = 1/z − 1/z33! + 1/z55! − ....
It has an isolated essential singularity at z0 = 0.

Theorem: For f differentiable in 0 < |z − z0| < R, the statements a)z0 is a removable
singularity; b) limz→z0

f(z) < ∞; c) f is bounded in a neighbourhood of z0; are equivalent.

Therefore if z0 is not a removable singularity, bn 6= 0 for some n, f is unbounded in any
neighbourhood of z0 (“goes to infinity at the singularity”).

Theorem: For f differentiable in 0 < |z − z0| < R it has a pole of order m if and only if

lim
z→z0

(z − z0)
mf(z) = l 6= 0, < ∞,

since in that case the limiting operation picks up the bm coefficient = l.

Theorem: f has a pole of order m at z0 if and only if 1/f has a zero of order m there.

Theorem: If f has pole at z0, then limz→z0
|f(z)| = ∞ (modulus is singular at a singularity).

Weierstrass-Casorati-Poincare Theorem: In every neighbourhood of an essential singu-
larity, f takes on all values in C except at most one(!)

What is going on? Consider the integral of a Laurent series around the closed loop s(t) =
z0 + reit, t ∈ [0, 2π], in the case of an isolated singularity at z0. Compute first for all integers n

∫
s

1

(z − z0)n
dz =

∫ 2π

0

ireit

rneint
dt =

i

rn−1

∫ 2π

0

ei(1−n)tdt = 0, n 6= 1.

If n = 1 we instead have

∫
s

1

(z − z0)1
dz = nw(s, z0) = 1.

For positive powers

∫
s

(z − z0)
ndz = 0

because the function is differentiable. Therefore,

∫
s

f(z)dz =

∫
s

b1

z − z0
dz + 0 = 2πinw(s, z0)b1 = 2πib1.

In order to extract the other coefficients, we need to multiply by the appropriate power of
(z − z0),

∫
s

f(z)(z − z0)
ndz =

∫
s

bn+1

z − z0
dz + 0 = 2πibn+1.

And

∫
s

f(z)(z − z0)
−ndz =

∫
s

an−1

z − z0
dz + 0 = 2πian−1.
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1.4 Infinity

We can extend C with the point ∞ by mapping the complex plane onto a sphere. The point
∞ is then the North Pole (not to be confused with a singularity-type pole). We can think of
{z : |z| > R} as a neighbourhood around ∞ and define continuity and differentiability. For
f(z) differentiable for |z| > R, we say that f has a removable or isolated essential singularity
or pole of order m at ∞, if g(z) = f(1/z), 0 < |z| < 1/R, has such a singularity at z = 0.
Similarly, we say that f has a zero of order m at ∞ if g has it at z = 0.

Ex. f(z) = 1/z, |z| > 0. g(z) = z, |z| > 0 has a removable singularity at z = 0, and so f has a
removable singularity at ∞.

Ex. f(z) = z. g(z) = 1/z, |z| > 0 has single pole at z = 0, and so f has a single pole at ∞.

Ex. f(z) = ez. g(z) = e1/z, |z| > 0 has an isolated essential singularity at z = 0, and so f has
an isolated essential singularity at ∞.

Ex. f(z) = 1/ sin(z), z 6= nπ, n ∈ Z. g(z) = 1/ sin(1/z)). Doesn’t work, since f is not
differentiable for |z| > R for any R. There are infinitely many isolated singularities of f as
z → ∞ (or of g as z → 0). We say that f has an essential singularity at ∞.

A function is said to be meromorphic in a domain D if it is differentiable everywhere in D
except at poles. Meromorphic functions on the extended complex plane can always be written
as rational functions (a fraction of two polynomials). This is not the case in the un-extended
complex plane.

What does it mean: We have finally extended the boring differentiable functions to
meromorphic functions, a much broader class. Poles are singularities where the function “goes
to infinity” as a particular power (z− z0)

m, encoded in the coefficient of the leading order term
(the one with the largest negative power) in the corresponding Laurent series. It is no longer
a Taylor series and we cannot extract the coefficients by simple differentiation.

2 Residues

We define the residue at a point z0 in terms of the Laurent series,

f(z0 + h) =

∞∑
n=0

anhn +

∞∑
n=1

bnh−n,

by (with s(t) = z0 + reit, t ∈ [0, 2π])

res(f, z0) = b1 =
1

2πi

∫
s

f(z)dz.

We define a simple loop to be a closed contour in a domain D for which all points either have
winding number 0 or 1. We then have the crucial

Cauchy’s Residue Theorem: Let s be a simple loop in a domain D and f differentiable
everywhere except at a finite number of isolated singularities, zr, r = 1, 2, .., n, all inside s.
Then ∫

s

f(z)dz = 2πi
∑

r

res(f, zr).
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