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1 Residues

We define the residue at a point z0 in terms of the Laurent series,

f(z0 + h) =
∞
∑

n=0

anhn +
∞
∑

n=1

bnh−n,

by (with s(t) = z0 + reit, t ∈ [0, 2π])

res(f, z0) = b1 =
1

2πi

∫

s

f(z)dz.

We define a simple loop to be a closed contour in a domain D for which all points either have
winding number 0 or 1. We then have the crucial

Cauchy’s Residue Theorem: Let s be a simple loop in a domain D and f differentiable
everywhere except at a finite number of isolated singularities, zr, r = 1, 2, .., n, all inside s.
Then

∫

s

f(z)dz = 2πi
∑

r

res(f, zr).

How to find the residue?:

Simple pole: If z0 is a simple pole of f(z), then

res(f, z0) = lim
z→z0

(z − z0)f(z).

Why? Because this singles out the b1/(z − z0) term, and all the others go to zero in the limit
(note that because there is a simple pole, there exists a Laurent series, with no negative powers
except for b1/(z − z0)).

Simple pole for a fraction: If f(z) = p(z)/q(z) has simple pole at z0, p(z0) 6= 0, q(z0) = 0,
then

res(f, z0) =
p(z0)

q′(z0)
.

Why? If the fraction has a single pole at z0, p, q must both be differentiable at z0. Hence they
have Taylor series around z0, and we can write

lim
z→z0

(z − z0)f(z) = lim
z→z0

(z − z0)(a0 + a1(z − z0) + ...)

c0 + c1(z − z0) + ...

Because q(z0) = 0, c0 = 0, and the limit is a0/c1 = p(z0)/q′(z0).

Ex.

f(z) =
cos(πz)

1 − z243
→ res(f, 1) =

cos(πz)

−243z243
|z=1 =

1

243
.
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General pole: If z0 is a pole of order m of f(z), then

res(f, z0) = lim
z→z0

(

1

(m − 1)!

dm−1

dzm−1
((z − z0)

mf(z))

)

.

Why? Again, we want to single out b1, but now we have terms bi(z − z0)
i, i = 1, .., m. First

we multiply by (z − z0)
m so that we only have positive powers. Then we differentiate all the

bm, bm−1, .., b2 terms away (that’s m − 1 times). Finally we have to divide out the (m − 1)!
factor we got from differentiating. Then take the limit, and only b1 is left. Note that we do
not need to know the Laurent series, we just need to know that it exists.

Ex. Triple pole at z = 1

(

z + 1

z − 1

)3

→ res(f, 1) = lim
z→1

1

2!

(

(z − 1)2f(z)
)′′

= 6.

Find the Laurent series: If one can guess the Laurent series, up to and including b1, that’s
the residue.

Ex.

f(z) =
1

z2 sin(z)
=

1

z2(z − z3/3! + ...)
=

1

z3

(

1 +
z2

6
+ ...

)

=
1

z3
+

1

6z
+ ...

res(f, 0) = 1/6.

2 Evaluation of real integrals

Trick: Real integrals over a period.

∫ 2π

0

F (cos(t), sin(t))dt

with F some function. Use the unit circle s(t) = eit, t ∈ [0, 2π]. Then

cos(t) = (z + 1/z)/2, sin(t) = (z + 1/z)/2i.

hence

∫ 2π

0

F (cos(t), sin(t))dt =

∫

s

F ((z + 1/z)/2, (z + 1/z)/2i)
dz

iz
= 2πiΣ,

where Σ is the sum of residues of F (z) inside s. Note that normally we have an integral in z
and put in a path to tranform it into a real integral in t. But now we have a real integral in t
which we rewrite as an integral in z.

Ex: F = cos3(t) + sin2(t).

F ((z + 1/z)/2, (z + 1/z)/2i)
1

iz
=

1

8i
z2 −

1

4i
z − 3i +

1

2iz
+

3

iz2
−

1

4iz3
+

1

iz4
.

It is already a Laurent series expanded around z = 0, where it has a fourth order pole. There
are no other poles. The residue is the coefficient of 1/z, 1/(2i). So the integral is 2πi/(2i) = π.
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Trick: Real integrals over the whole real axis.

∫

∞

−∞

f(x)dx ≡ lim
x1→−∞,x2→∞

∫ x2

x1

f(x)dx.

This is not (necessarily) the same as the Cauchy principal value of the integral

lim
R→∞

∫ R

−R

f(x)dx ≡ P

∫

∞

−∞

f(x)dx.

If both exist, they are equal, but sometimes the second one exists, while the first one does not.

Trick: Closing the contour above.

If f differentiable in the upper half plane Im(z) ≤ 0 except for some poles, that are not on the
real axis and f is such that along the half circle sR(t) = Reit, t ∈ [0, π], |f(z)| < A/R2, at large
enough R for some constant A, then

∫

∞

−∞

f(x)dx = 2πiΣ,

summing residues of poles in the upper half plane. The reason is that for a given R, we have
that the path consisting of [−R, R] and sR is closed and runs counterclockwise. So we can sum
the poles inside, and as R → ∞, the sR part goes to zero ≤ πRA/R2. Because also f(x) < 1/R2

along the real axis, we know that the integral is convergent, and so calculating the principal
value is sufficient.

Ex.
∫

∞

−∞

dx

(x2 + a2)(x2 + b2)
, 0 < a 6= b > 0,

has single poles at z = ±ia and z = ±ib. The residues at the upper half-plane poles are

lim
z→ia

z − ia

(x2 + a2)(x2 + b2)
=

1

2ia(b2 − a2)
, lim

z→ib

z − ib

(x2 + a2)(x2 + b2)
= −

1

2ib(b2 − a2)
→ 2πiΣ =

π

ab(a + b)

This works, because |f(z)| < 1
R4 , along sR for R large enough.

Trick: Closing the contour below.

Similarly, we could have added the halfcircle s−R = −Reit to [−R, R]. This however gives a
closed path in the clockwise direction, so we have instead under the same conditions on f that

∫

∞

−∞

f(x)dx = −2πiΣ,

where we now sum over the residues of poles in the lower half plane.

Ex.

∫

∞

−∞

dx

(x2 + a2)(x2 + b2)
, 0 < a 6= b > 0,

has single poles at z = ±ia and z = ±ib. The residues at the lower half-plane poles are

lim
z→−ia

z + ia

(x2 + a2)(x2 + b2)
= −

1

2ia(b2 − a2)
, lim

z→−ib

z + ib

(x2 + a2)(x2 + b2)
= +

1

2ib(b2 − a2)
→ −2πiΣ =

π

ab(a + b)
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Which of course gives the same result.

Ex. We could also have a complex function on the real axis

f(z) =
eiz

(z2 + a2)(z2 + b2)
.

Then on sR, |f(z)| < e−y/R4, where y > 0, since we are in the upper half plane. The poles are
the same, and the residues are

e−a

2ia(b2 − a2)
, −

e−b

2ib(b2 − a2)
,

so we have
∫

∞

−∞

eix

(x2 + a2)(x2 + b2)
dx =

∫

∞

−∞

cos(x) + i sin(x)

(x2 + a2)(x2 + b2)
dx =

π

b2 − a2

(

e−a

a
−

e−b

b

)

.

Comparing real and imaginary parts, we immediately have the result for two real integrals, one
of which is zero. Note that here we could not have closed the contour below, since then y < 0,
and the integral along s−R would not go to zero. Obviously, if eix → e−ix, it would have been
the other way around.

Trick: Rectangular contour.

What if we only have that |f(z)| < A/R? Then we can only calculate integrals of the form

∫

∞

−∞

eixf(x)dx

using a different contour, which is

[−X1; X2], [X2; X2 + iY ], [X2 + iY,−X1 + iY ], [−X1 + iY,−X1],

where X1,2, Y are real. This a counterclockwise rectangle of size Y times X1 + X2. We now
need to show that the integral along the three “non-real” sides are zero in the limit X1,2, Y
going to infinity. Along the vertical edges,

|

∫

f | <

∫ Y

0

A

X2
e−tdt <

A

X2
, |

∫

f | <

∫ Y

0

A

X1
e−tdt <

A

X1
,

which goes to zero by assumption. Also along the upper horizontal edge

|

∫

f | < |

∫ X2

−X1

A

Y
e−Y dt| =

A(X1 + X2)

Y
e−Y ,

which also goes to zero by taking the y → ∞ limit first. But then we can take the X1,2 limits
separately, so the integral is convergent.

Ex.

∫

∞

−∞

eixx3

(x2 + a2)(x2 + b2)
dx =

iπ

b2 − a2
(b2e−b − a2e−a), 0 < a 6= b > 0.

Equating real and imaginary parts we again get two real integrals, one of which is zero. Ob-
viously, had we had eix → e−ix, we could have drawn a clockwise box in the lower half plane
and added those residues up instead, with a minus sign.
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Trick: Poles on the real axis.

If there are poles on the real axis itself, we need to choose a contour that “avoids” them, but
in some limit reduces to the real axis. So to either the half circle of the rectangle above, we
add small half circles sǫ(t) = x0 + ǫe−it, t ∈ [0, π] (note the direction) with x0 the pole, so that
when the contour is “closed above” the poles on the real axis are outside the contour. Hence
the contour integral is zero. Then we can calculate a principal value of the integral

P

∫

∞

−∞

f(x)dx = lim
R→∞,ǫ→0

(
∫ x0−ǫ

−R

f(x)dx +

∫ x0+ǫ

R

f(x)dx

)

= − lim
ǫ→0

∫

sǫ

f(z)dz.

This may exist as a limit, even though the original integral does not. We have to argue for
convergence on a case-by-case basis.

Ex.
∫

∞

−∞

eix

x
dx.

f has a pole at x0 = 0, but for the rest, we can again use the rectangle contour, and we know
that the three off-axis edges give zero contribution to the integral. We therefore calculate

lim
ǫ→0

∫

sǫ

eiz

z
dz = lim

ǫ→0

∫

sǫ

(1/z + Φ(z))

= lim
ǫ→0

∫

sǫ

1/z + Something proportional to ǫ = −iπ.

Since the total integral around the whole contour is zero and three of the edges give zero, the
small circle and the real axis contributions must add up to zero, and so

P

∫

∞

−∞

eix

x
dx = iπ = P

∫

∞

−∞

cos(x)

x
dx + iP

∫

∞

−∞

sin(x)

x
dx.

But the imaginary part is in fact analytic at x = 0, and so we can dispense with the principal
value label, and we have (because the function is even)

∫

∞

0

sin(x)

x
=

π

2
.

Trick: Integrals of the type

∫

∞

−∞

eax

Φ(ex)
dx.

We use the rectangular contour

[−X1; X2], [X2; X2 + i2π], [X2 + i2π,−X1 + i2π], [−X1 + i2π,−X1],

On the upper horizontal edge we write

−

∫ X1

−X2

ea(−t+2πi)

Φ(e−t)
dt = −e2πia

∫ X2

X1

eax

Φ(ex)
dx.

If the function Φ is such that the integral vanishes on the vertical edges for X1,2 → ∞, we have

(1 − e2πia)

∫

∞

−∞

eax

Φ(ex)
dx = 2πiΣ,
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with Σ the sum of residues of the poles in the rectangle.

Ex.

∫

∞

−∞

eax

e2x + 1
dx, (0 < a < 1).

There are infinitely many poles, but only two of them are in the rectangle z = −eiπa/2/2 and
z = −ei3πa/2/2. Adding these up, we get

... =
π

2 sin(πa/2)
.
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