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1 Analytic continuation

Wherever a function is analytic, it can be represented by a power series with a convergence
radius equal to the distance to the nearest singularity. Power series around different points give
different series, but on the overlap of their discs of convergence, the two sums agree (as they
must! It’s the same function).
Analytic continuation: If f1 is analytic on a domain S1 and f2 is analytic on S2, and f1 = f2

on the (non-empty) overlap between S1 and S2, f2 is a direct analytic continuation of f1 to S2

(and vice versa).

Ex. 1

1−z is a direct analytic continuation of
∑

n zn, |z| < 1 to C, z 6= 1.

Ex. 1

1−z is a direct analytic continuation of 1

1−x , x ∈ R, x 6= 1 to C, z 6= 1.

We can set up a whole chain of fn defined on domains Sn, where Sn overlaps with Sn−1

and Sn+1 and where fn is equal to fn±1 on those overlaps, respectively. Then for instance f8

is an analytic continuation of f1, even though there is no overlap between S1 and S8. We can
even have a chain of domains that come back to the original domain S1.

If f can be analytically continued from S1 to Sn = S1 but fn 6= f1, f is said to be multivalued

or multiform. Otherwise it is uniform.
Ex. f(z) =

√
z is multiform, since for every z = reiθ, we can choose

√
z =

√
reiθ/2 or

√
reiθ/2+iπ .

But we can analytically continue using the domains

H1 = C, Re(z) > 0, H2 = C, Im(z) > 0, H3 = C, Re(z) < 0, H4 = C, Im(z) < 0.

As we go in the chain H1, H2, H3, H4 we can then define a continuous function which agrees on
the overlaps, but as we get back to H1 the angle has shifted by π! If we go around one more
time, we can again define a continuous function and as we get back to H1, we are back to the
original angle.
Ex. f(z) = z1/n = r1/neiθ/n, n ∈ N, a similar thing happens, but we have to go around the
origin n times before we get back to the original value for the argument.
Ex. f(z) = log(z). In order to have a continuous value of the function

log(z) = log(r) + iθ,

we can again use the domains H1,2,3,4, but every time we go around the origin, we will pick up
2π. hence we never get back to the original value. Before we then defined the principal value
to be

Log(z) = log(r) + i[θ (mod 2π)],

so that all the revolutions around the origin are ”projected” back to the cut plane Cπ, with the
arbitrary choice of interval θ ∈] − π, π].
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Multiform functions on C can instead be thought of as defined on a relevant Riemann surface,
which amounts to copying the complex plane an appropriate number of times ”cut and glue”
these copies together so that the function is continuous. Where we cut is called a branch, the
function on each copy C Riemann sheet is a branch. The end of the branch cut (if there is one)
is the branch point. This is best illustrated by examples.

Ex. f(z) =
√

z. We had to go through the domains H1,2,3,4 twice, so let us copy the complex
plane an introduce H5,6,7,8 = H1,2,3,4, and say that H5 follows H4 and H1 follows H8. Then we
can define a single valued continuous (and differentiable) function on the chain H1,2,3,4,5,6,7,8,1

which returns to its original value. It can be thought of as two ”sheets” of paper each repre-
senting C, but cut along the negative real axis and glued together so that as you go around the
origin and get to the negative axis, you ”move up one sheet”, go around again and then ”move
down one sheet”.

Ex. f(z) = z1/n, n ∈ N. Now we have H1,...,4n,1 as our sequence on n copies of the complex
plane, which together are glued together as our n-sheet Riemann surface. Every time we move
around the origin, we go up one sheet, except the last one, where we go back down n−1 sheets.

Ex. f(z) = log(z). We now need infinitely many sheets to define our Riemann surface, and as
we go around the origin, we go up one level. If we go the other way around we go down one
level. Note that it is our choice to place the cut at θ = π (negative real axis), so that that’s
where we go up and down. It is equally valid to put the cut at any other θ. Our choice fits
with our definition of Log(z).

Ex. f(z) = zα, α = a + ib ∈ C. Using our definition we have the n’th branch of the function

(reiθ)α = exp (α(log(r) + iθ + i2πn)) , θ ∈] − π, π].

We have

|f(z)| = exp (a log(r) − (θ + 2πn)b) , arg(z) = b log(r) + aθ + 2πna.

a) If b 6=, different n (different sheets) give different modulus, and we need infinitely many
sheets for our Riemann surface. b) If b = 0 and a is irrational, the modulus is rational, but
there is no n so that na is an integer, which would mean that we have returned to the original
domain. Again, we need infinitely many sheets. c) If b = 0 and a is rational, however, there is
an n so that na is integer, and we need that number of sheets.

Integration on the Riemann surface. If we have a multiform function defined on a Riemann
surface, we can integrate it along a contour s(t) from z0 to z1 using the antiderivative at the
endpoints

∫

s

f = F (z1) − F (z0)

but taking into account that which sheets z1 and z0 are on.

Ex. z1/5, s(t) = (1 + t)eit, t ∈ [0, 6π]. The Riemann surface has 5 sheets, and we need to go
3 times around the origin (note that there is no pole at origin, it’s a branch point). Take the
antiderivative F (z) = 5z6/5/6, and plug in

F (s(6π)) − F (s(0)) =
5

6

(

(1 + t)6/5e36π/5 − 1
)

.

which is not the same as

F ((1 + 6π)) − F (1) =
5

6

(

(1 + 6π)6/5 − 1
)

.
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Ex. Let’s calculate
∫ ∞

0

xa

(1 + x2)2
dx, 1 < a < 2.

Extending to the complex plane, we have poles at z = ±i, with residues

r1 =
i

4
ia(a − 1) =

i

4
eiaπ/2(a − 1), r2 = − i

4
(−i)a =

i

4
ei3aπ/2(a − 1).

The function is however multiform since a > 1. Let us choose the contour from ρ > 0 on the
real axis to R > ρ. Then along counterclockwise full circle of radius R. Back along the real
axis from R to ρ. Along a clockwise circle with radius ρ. It is clear that the integrals along the
circles will go to zero in the limit R → ∞, ρ → 0.

The trick is now that as we go along the first circle, we go up one Riemann sheet, and so
as we get back to the real axis, we have picked up a phase 2π. Hence we have

∫ R

ρ

xa

(1 + x2)2
dx +

∫ ρ

R

(xei2π)a

(1 + x2)2
dx = 2πi(r1 + r2).

We therefore have

∫ R

ρ

xa

(1 + x2)2
dx − e2πia

∫ R

ρ

xa

(1 + x2)2
dx = 2πi(r1 + r2).

and taking the limits, we have

∫ ∞

0

xa

(1 + x2)2
dx = −1

4
(1 + (−1)a)(a − 1)

π

cos(aπ/2)
.

What does it mean? We can uniquely extend a function in an analytic way, although for
multiform functions we need a non-trivial Riemann surface to make everything well-defined,
continuous and differentiable everywhere. But then all the machinery of integration and poles
works, if we keep in mind when integration contours go from one sheet to another.

2 Conformal transformations

A conformal transformation is a mapping from C to C which conserves the angle between paths.

Theorem: If the derivative s′(t) of the path s(t) exists and is non-zero, then the tangent of s
at z0 = s(t0) makes an angle arg(s′(t0)) (mod 2π) with the real axis.

Consider a differentiable function f(x + iy) = u(x, y) + iv(x, y) and two paths s1,2(t), we
have

arg((f(s1))
′(t0)) − arg((f(s2))

′(t0)) = arg(f ′(z0)) + arg(s′1(t0)) − arg(f ′(z0)) − arg(s′2(t0))

= arg(s′1(t0)) − arg(s′2(t0)).

so the angle between the paths and the image of the paths is conserved, if f is differentiable.

Theorem: A differentiable function is conformal everywhere where f ′(z) 6= 0.

Ex. f(z) = z3, u(x, y) = x3−3xy2, v(x, y) = 3x2y−y3, and the paths s1(t) = 1+it, s2(t) = t+i
meet at right angles at t = 1. We have

s1 : u′(t) = −6t, v′(t) = 3 − 3t2 s2 : u′(t) = 3t2 − 3, v′(t) = 6t.
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Taking the inner product as vectors, we have

u′

1(t)u
′

2(t) + v′1(t)v
′

2(t) = 36t(1 − t2)t=1 = 0, z = f(s1(1)) = f(s2(1)) = −2(1 − i).

Ex. f(z) = 1/z, u(x, y) = x/(x2 + y2), −y/(x2 + y2). A circle s(t) = ceit is mapped into the
circle e−it/c, so with the inverse radius and running the other way around the origin.

A particular set of conformal transformations are the Möbius mappings

f(z) =
az + b

cz + d
, a, b, c, d ∈ C, ad − bc/neq0.

Composition of Möbius mappings gives a Möbius mapping. They map circles and straight lines
into circles and straight lines.

Theorem: Every Möbius mapping can be obtained by composition of a translation, an inver-

sion, a magnification, a a rotation and a translation, where we define: translation f(z) = z + k,
k ∈ C, rotation f(z) = eiθz, θ ∈ R, magnification f(z) = hz, h > 0, inversion f(z) = 1/z.

If f = u(x, y) + iv(x, y), u and v are solutions to Laplace’s equation

∂2u

∂x2
+

∂2u

∂y2
= 0 =

∂2v

∂x2
+

∂2v

∂y2
,

and hence harmonic. Since the lines u(x, y) =constant and v(x, y) =constant are orthogonal
and f is conformal, so are the lines in x, y for which u(x, y) = constant and v(x, y) =constant. In
the field of potential theory. These are called equipotential lines and stream lines, respectively.
in fluid dynamics, the fluid flows along the stream lines.

What does it mean? Conformal mappings conserve angles, and all differentiable mappings
are conformal. In physics appplications, we sometimes find symmetry under conformal transfor-
mations, in the same way as we find symmetry under rflection, translations, rotations, Lorentz
transformations etc. Møbius mappings are a particular subset of conformal transformations,
and are all the possible combinations of Rotations, Translations, Inversions, Magnifications.
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