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1 PDEs

Differential equations for functions of multiple variables f(x, t) involve partial derivatives and a
called partial differential equations. In physics, we usually consider functions of time t and one
or more spatial coordinates x. Let us concentrate on linear PDEs, for which a general equation
in one spatial dimension could be written (I sometimes use the notation ∂t = ∂

∂t )

(

f(x, t)∂2
t + g(x, t)∂2

x + h(x, t)∂t∂x + j(x, t)∂t + k(x, t)∂x + l(x, t)
)

u(x, t) = r(x, t).

We will assume that the functions f, g, h, j, k, l, r are analytic where they are defined, which
will be of the form

t ∈ [a, b], x ∈ [c, d].

The generalisation to more spatial dimensions is obvious.

Rather than a general study of this type of equations (which is exceedingly hard), we will
concentrate on some physically relevant cases.

• With r = l = k = j = h = 0 and f = 1, g = −c2, we recover the (homogeneous) Wave
equation in 1+1 dimensions,

∂2u(x, t)

∂t2
= c2 ∂2u(x, t)

∂x2
,

A priory, c is just a constant, but we will see that it is the speed of propagation of the
waves, c2 = T/ρ in terms of the denisty ρ and the string tension T .

• With r = l = k = h = f = 0 and j = 1, g = −c2 we instead get the (homogeneous) Heat
equation in 1+1 dimensions,

∂u(x, t)

∂t
= c2 ∂2u(x, t)

∂x2
,

Now c2 = K/σρ, in terms of the specific heat σ, the thermal conductivity K and the
density ρ.

• With r = l = k = h = j = g = 0 and f = 1, we get the Laplace equation, here written
in 2 dimensions. There is no longer a time dimension (or the dependence on time is
undetermined)

∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2
= 0,

• The inhomogeneous Laplace equation is known as the Poisson equation,

∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2
= r(x, y).
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The equations have multiple solutions in general, and a set of boundary conditions is required
to unambiguously determine a solution.

Because the equations are linear, if u1(x, ...), u2(x, ...) are solutions to the homogeneous version
of each equation, then so is

u(x, ...) = au1(x, ...) + bu2(x, ...), a, b ∈ C.

1.1 Separation of variables and factorization

In many cases, functions of multiple variables are separable and the solution factorizes into
product of single-variable functions. So in case the separation works in Cartesian coordinates,
we have for instance

u(x, t) = F (x)J(t), u(x, y) = F (x)G(y), u(x, y, t) = F (x)G(y)J(t), u(x, y, z, t) = F (x)G(y)H(z)J(t).

when there is cylindrical or spherical symmetry, we may be able to separate in the corresponding
variables

u(r, θ, z, t) = F (r)G(θ)H(z)J(t), u(r, θ, φ, t) = F (r)G(θ)H(φ)J(t).

For a linear homogeneous differential equation,

Du = 0,

we can hope to find some eigenfunctions un, with

Dun = λnun.

If so, we can expand our solution and write

u =
∑

n

cnun, → Du =
∑

n

cnλnun = 0,

which if the un form an orthonormal basis amounts to n separate equations to solve. Boundary
conditions will give the coefficients cn.

Ex.: Consider the operator D = ∂/∂x. The eigenfunctions for this are the complex exponen-
tials, since

∂

∂x
u =

∂

∂x
einx = ineinx → λn = in.

Obviously, the solution to Du = 0 is u = c0e
i0x = c0.

Ex.: Now consider the wave equation,

D = ∂2
t − c2∂2

x, → un = eiωnt+inx, λn = −ω2
n + c2n2.

To solve Du = 0, we require ωn = ±cn, and so the complete solution is

u =
∑

n

cnein(x−ct) + c̃nein(x+ct).

More about this later. The boundary conditions tell us the allowed values for n and the values
of cn.
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Ex.: The heat equation has

D = ∂t − c2∂2
x, → un = eiωnt+inx, λn = iωn + c2n2,

and we have

u =
∑

n

cneinx−c2n2t).

Ex.: For general coefficient functions f, g, h, ..., it is hard to find a set of eigenfunctions en, so
that

(em, Den) ∝ δmn.

A general differential operator will mix up the basis both as a function of space and time. below
we will see a few cases that work.

1.2 The Laplacian

In many applications, we encounter second order spatial derivatives in 1, 2 or 3 dimensions.
Sometimes the problem at hand allows us to identify rotational or cylindrical symmetry, and
it may be advantageous to change coordinate system for the spatial coordinates.

The laplacian in cartesian coordinates (x, y) in 2 dimensions

∇2f =
∂2f

∂x2
+

∂2f

∂y2

In polar coordinates (r =
√

x2 + y2, θ = arctan(y/x)) in 2 dimensions

∇2f =
∂2f

∂r2
+

1

r

∂f

∂r
+

1

r2

∂2f

∂θ2

The laplacian in cartesian coordinates (x, y, z) in 3 dimensions

∇2f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
,

In cylindrical coordinates (r
√

x2 + y2, θ = arctan(y/x), z = z) in 3 dimensions

∇2f =
∂2f

∂r2
+

1

r

∂f

∂r
+

1

r2

∂2f

∂θ2
+

∂2f

∂z2
,

In spherical coordinates x = r cos θ sin φ, y = r sin θ sin φ, z = r cosφ,

∇2f =
∂2f

∂r2
+

2

r

∂f

∂r
+

1

r2

∂2f

∂θ2
+

cot θ

r2

∂f

∂θ
+

1

r2 sin2 θ

∂2f

∂φ2
.

Ex.: In quantum mechanics, the spatial derivative is the momentum operator,

i~
∂

∂x
= px,

and hence the Laplacian encodes the kinetic energy,

−
~2

2m
∇2 = −

|p|2

2m
.
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1.3 Spherical harmonics

The angular part of the spherical Laplacian in 3 dimensions has a set of eigenfunctions known
as spherical harmonics

∇2Ylm(θ, φ) = −
l(l + 1)

r2
Ylm(θ, φ).

These turn out to be an orthogonal basis for all square integrable functions defined on the unit
sphere. Therefore if we assume that a solution factorizes,

u(r, θ, φ) = f(r)g(θ, φ),

we can always expand it as (l = 0, ..,∞, m = −l, .., l)

u(r, θ, φ) =
∑

lm

f(r)glmYlm(θ, φ),

with

glm =

∫ 2π

0

dφ

∫ π

0

dθ sin(θ)g(θ, φ)Ylm(θ, φ),

and we have

∇2u(r, θ, φ) =
∑

lm

(

d2f(r)

dr2
+

2

r

df(r)

dr
−

l(l + 1)

r2
f(r)

)

glmYlm(θ, φ).

The spherical harmonics are associated Legendre polynomials,

Ylm(θ, φ) =

√

(2l + 1)(l − m)!

4π(l + m)!
eimφPlm(cos(θ)), Plm(cos(θ)) =

[

(1 − x2)m/2 dm

dxm
(Pl(x))

]

x=cos(θ)

in terms of the normal Legendre polynomials with the argument cos(θ). Note that in case there
is no φ-dependence (cylindrical symmetry), only the m = 0 contributions survive, and we have

Yl0(θ, φ) =

√

(2l + 1)

4π
Pl(cos(θ)).

For polar coordinates in 2 dimensions, we also have the notion of spherical harmonics, since
the periodic solutions of

∇2g(θ) =
−n2

r2
g(θ),

are simply cos(nθ), sin(nθ), n > 0. Or equivalently einθ, which is of course the three dimensional
spherical harmonics, with the θ dependence taken out. They are orthonormal with the usual
innner product.

Using this, and writing u(r, θ) = f(r)g(θ) the radial equation becomes

∇2f(r)g(θ) =

(

∂2f

∂r2
+

1

r

∂f

∂r
−

n2

r2
f

)

g(θ).
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1.4 Boundary conditions

For Cartesian coordinates, we will usually assume that we are on a finite interval t ∈ [0; tf ],
x, y, z ∈ [0; l], with boundary conditions

• Dirichlet boundary conditions:

u(x, 0) = u0(x), u(x, tf ) = uf(x), or u(0, t) = u0(t), u(l, t) = Ul(t),

which in the case of time evolution means that we know the beginning and end configur-
ation of the ”field” u(x, t). Or in the case of two spatial coordinates, it means we know
the function around the whole edge of the area of definition. In many cases we will use
the trivial Dirichelt boundaries, where we put the u = 0 along (parts of) the boundary.

• von Neumann boundary conditions:

∂f(x, t)

∂t
|t=0 = hi(x),

∂f(x, t)

∂t
|t=tf

= hf (x),

in which case we know the initial and final derivatives (or velocities).

• Cauchy boundary conditions:

f(x, 0) = g(x),
∂f(x, t)

∂t
|t=0 = h(x),

which are the most common in initial values problems, such as the evolution of equations
of motion in time. Only information at the initial time is assumed.

• Mixed boundary conditions: Combinations of these. In a sense, Cauchy initial conditions
are a mixture of Dirichlet and Neumann.

In the case of spherical (in 3D) coordinates, we instead have φ ∈ [0; 2π], θ ∈ [0; π], r ∈ [0, a]
(where a = ∞ is allowed). Then a boundary condition (Dirichlet, Neumann or mixed) is often
specified on some sphere x2 + y2 + z2 = R2. Similarly for polar coordinates in 2D.

1.5 Laplace’s equation in 2 dimensions

In 2 spatial dimensions, Laplace’s equation coincides with the equation for analytic or harmonic
functions, with the interpretation of x, y as the real and imaginary part of the argument z =
x + iy,

∂2
xu(x, y) + ∂2

yu(x, y) = 0.

We therefore need to find a complex differentiable function, of which u(x, y) is the real (or
imaginary) part. Given a boundary condition, say the function along the real axis x (or indeed
any curve), the solution is the (real part of the) analytic continuation to the 2-dimensional
”complex” plane.

In particular, in the spherically symmetric case, and if the boundary is a circle of radius R with
u(R, θ) = f(θ), we have Poisson’s integral equation

u(r, θ) =
1

2π

∫ 2π

0

f(θ′)
R2 − r2

R2 − 2Rr cos(θ − θ′) + r2
dθ′.

This follows directly from the fact that an analytic function is uniquely determined within a
closed curve by the function on that curve.
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Also, as we saw above, the have the radial equation

(

∂2f

∂r2
+

1

r

∂f

∂r
−

n2

r2
f

)

= 0,

for which the solution is

f(r) = c1 cosh(n ln(r)) + c2 sinh(n ln(r)).

1.6 Laplace’s equation in 3 dimensions

In three dimensions, there is no possible link to analytic functions, although solutions are still
called harmonic. Because of the rotational symmetry of the Laplacian, we stand the best chance
assuming that we can factorize in spherical coordinates, and we have as above

∇2u(r, θ, φ) =
∑

lm

(

d2f(r)

dr2
+

2

r

df(r)

dr
−

l(l + 1)

r2
f(r)

)

glmYlm(θ, φ) = 0.

Assuming again that our boundary is a sphere of radius R, u(R, θ, φ) = h(θ, φ), we can expand
on spherical harmonics

h(θ, φ) =
∑

lm

hlmYlm(θ, φ),

for some hlm. Then we need to solve
(

d2f(r)

dr2
+

2

r

df(r)

dr
−

l(l + 1)

r2
f(r)

)

= 0,

for each value of l. This is a Cauchy equation, for which the solutions are

f(r) = rl, f(r) = r−l−1.

If we for simplicity assume that there is cylindrical symmetry, the complete solution is

u(r, θ, φ) =
∑

l

Alr
lPl(cos(θ)), r < R,

and

u(r, θ, φ) =
∑

l

Blr
−l−1Pl(cos(θ), r > R,

where

Al =
2l + 1

2Rl

∫ π

0

g(θ)Pl(cos(θ)) sin(θ)dθ, Bl =
(2l + 1)Rl+1

2

∫ π

0

g(θ)Pl(cos(θ)) sin(θ)dθ,

respectively.

Ex.: Solving the Laplace equation is sometimes known as potential theory, since solutions are
conservative potentials. This means that given a solution u(x, y, z), we can interpret it as the
(gravitational of electromagnetic) potential that a particle moves in. Then, the force is the
gradient of the potential

F(x, y, z) = −∇u(x, y, z).
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Not all sets of forces derive from a potential, but those that do are conservative in the sense the
work needed to move a particle from one position to another does not depend on the trajectory
along which we do it. In 2D this is precisely the Cauchy theorem, namely that if a function
has an anti-derivative, integrals along a path only depend on the endpoints of that path. This
also holds for functions who have an anti-derivative, ie, solutions to Laplace’s equation.

Ex.: The gravitational field around a point mass has the potential

u(r) = −
k

r
+ c, k > 0.

It obeys Laplaces equation in 3D, since

∂2u

∂r2
+

2

r

∂u

∂r
= 0

(there is no angular dependence). In fact, the gravitational field in D spatial dimensions has
to obey

∂2u

∂r2
+

D − 1

r

∂u

∂r
= 0,

which means that

u(r) =
k

rD−2
+ c, D 6= 2, u(r) = k ln(r) + c, D = 2

usually, one fixed the constant by imposing limr→∞ = 0 and some value −k at r = R. Then

u(r) =
−kRD−2

rD−2
.

Back in D=3, we have the force

Fr(r) = −
k

r2
, k = GmM

so that gravitation in attractive, and where we have used our knowledge of Newtonian gravity
to fix the integration constant k.

It is important to note that Laplaces equation only holds at point were there is no mass (or
electric charge in the case of electromagnetism). Otherwise we would have to solve the Poisson
equation, for which solutions do not superpose.
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