Mathematical Methods.

Problem set 10. Hand-in 1/12-2008

1. Solve the one-dimensional heat equation on an interval $x \in [0, 10]$, with boundary conditions u(x = 0, t) = u(x = 10, t) = 0, with initial "temperature" profile

a) $u(x,t=0) = \sin(\pi x/10)$, b) u(x,t=0) = x, x < 5; u(x,t=0) = 10 - x, x > 5, c) $u(x,t=0) = x(100 - x^2)$.

- 2. Solve the one-dimensional wave equation on an interval $x \in [0, 1]$, with boundary conditions u(x = 0, t) = u(x = 1, t) = 0, with initial velocity zero, and with initial profile
 - a) u(x,t=0) = kx(1-x), b) $u(x,t=0) = k\sin(2\pi x)$, c) $u(x,t=0) = k(x-x^3)$.
- 3. Solve the one-dimensional wave equation on an interval $x \in [0, 1]$, with boundary conditions u(x = 0, t) = u(x = 1, t) = 0, with initial profiles as above, but with initial velocities (use a) with a) above, b) with b), c) with c))
 - a) $\partial_t u(x,t=0) = k \sin^2(\pi x)$, b) $\partial_t u(x,t=0) = k(x^2 x^4)$, c) $\partial_t u(x,t=0) = kx(2-2x)$.
- 4. Consider functions defined on $x \in [0, 1]$. Look up the axioms that define a vector space, and determine which of the following sets of functions constitute a vector space
 - a) All functions with two continuous derivatives,
 - b) All polynomials with f(x=0) = 0.
 - c) All polynomials with f(x = 0) = 1.
 - d) All polynomials of degree 9.
 - e) All solutions to the differential equation (a,b,c real numbers)

$$au_{xx} + bu_x + cu = 0.$$

• f) All solutions to the differential equation

$$u_{xx} + x^2 u = 0.$$

5. Consider the vector space spanned by the polynomials $1, x, x^2, x^3$. Consider also the operator D, which denotes normal differentiation, and the operator X, which multiplies by x. In the basis given, write a matrix representation of the combined operators

a) D, b) XD - DX, c) $X^2D^2 - D^2X^2$.

6. Consider the integral operator with kernel $K(x, y) = \sin(x)\sin(y), x, y \in [-\pi, \pi]$. Show that there are infinitely many linearly independent eigenvectors with eigenvalue zero.