Mathematical Methods.

Problem set 7. Hand-in 3/11-2008

Problem set 7 is about a set of tools we will need later on: Orthogonal polynomials, Fourier series, Fourier transform.

1. Orthogonal polynomials: a) Show explicitly that the first 5 of the Hermite polynomials

$$He_0 = 1, \quad He_n = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} \left(e^{-x^2/2} \right)$$

are orthogonal on $] - \infty, \infty[$ with respect to the weight $p(x) = e^{-x^2/2}$. b) Make them orthonormal.

2. Fourier series: Find the Fourier series for

a)
$$f(x) = \frac{1}{4}x^2$$
, $x \in [-\pi, \pi]$, b) $f(x) = |x|$, $x \in [-\pi, \pi]$,
c) $f(x) = x^2$, $x \in [-\pi/2, \pi/2]$ and $\pi^2/4$, $x \in [\pi/2, 3\pi/2]$.

d) Use one of these to show that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

- 3. Real Fourier transform: a-c) Find the real Fourier series for the functions above.
- 4. The quantum harmonic oscillator and Gaussian integration: Given the Hamiltonian of the harmonic oscillator

$$\hat{H} = -\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + \frac{m\omega^2}{2}x^2,$$

we have the time-independent Schrödinger equation

$$\hat{H}\langle x|n\rangle = E_n\langle x|n\rangle,$$

for some energy eigenstates $\langle x|n \rangle$ with eigenvalues E_n . a) Show that this is a Sturm-Liouville problem, and identify r(x), p(x) and q(x).

Then we know that we have a set of orthogonal polynomials $\psi_n(x)$ corresponding to the eigenvalues. By writing

$$\langle x|n\rangle = ce^{-ax^2}h_n(x)$$

b) Show that the functions $h_n(x)$ are the Hermite polynomials. c) Calculate the correlation functions

$$\langle x^m \rangle = \langle n | x^m | n \rangle = \int_{-\infty}^{\infty} x^m \langle n | x \rangle \langle x | n \rangle dx.$$

for n, m = 0, 1, 2, 3.

5. Fourier transform: Calculate the Fourier transforms of

a)
$$f(x) = e^{-k|x|}$$
, b) $f(x) = x^n e^{-ax^2}$, c) $f(x) = \frac{1}{x^2 + a^2}$, d) $f(p_0) = \frac{1}{p_0^2 - \omega_p^2 \pm i\epsilon}$

 $k>0,\,n=0,1,2,\,a>0,\,\epsilon>0,\,\omega_p>0.$ In d) use the inverse Fourier transform with $\int dp_0 e^{ip_0 t}$ (so with t instead of x).