Mathematical Methods.

Problem set 8. Hand-in 10/11-2008

1. Show that the following functions obey Laplace's equation in 2 dimensions and draw sketch equipotential lines,

a)
$$u(x,y) = xy$$
, b) $u(x,y) = x^2 - y^2$, c) $(x^2 - y^2)/(x^2 + y^2)^2$

2. Show that the following functions are solutions to the heat equation

a)
$$u(x,t) = e^{-2t}\cos(x)$$
, b) $u(x,t) = e^{-t}\sin(3x)$, c) $u(x,t) = e^{-4t}\cos(\omega x)$.

3. Show that the following functions are solutions to the wave equation in 1+1D,

a)
$$u(x,t) = x^2 + 4t^2$$
, b) $u(x,t) = x^3 + 3xt^2$, c) $u(x,t) = \sin(\omega ct)\sin(\omega x)$

4. Show that $u(x,y) = a \ln(x^2 + y^2) + b$ solves the Laplace equation and determine a, b from the boundary conditions

$$u = 0$$
, $x^2 + y^2 = 1$ and $u = 5$, $x^2 + y^2 = 9$.

- 5. Solve the Laplace equation in spherical coordinates with the boundary conditions on the unit sphere given by
 - a) $f(\theta,\phi) = 1$, b) $f(\theta,\phi) = \cos(\theta)$, c) $f(\theta,\phi) = \cos(2\theta)$, d) $f(\theta,\phi) = \cos(3\theta) + 3\cos(\theta)$.
- 6. Using separation of variables, find the general solution of

$$\frac{\partial^2 u(x,t)}{\partial t^2} + c^2 \frac{\partial^4 u(x,t)}{\partial x^4} = 0,$$