
6 Reweighting

The configurations generated in a Monte Carlo simulation contain a huge amount of
information, from which we usually distill a couple of numbers.

It would be a shame to waste all that information. Reweighting is a method which
allows us to “expand” the results from the original simulation, performed at inverse
temperature β0, say, to any other β sufficiently close to the simulation point without
performing any additional simulations.

The simplest form of the reweighting is based on the fact that the canonical probabil-
ity of a configuration φ at inverse temperature β, pβ(φ), can be easily related to the
distribution at other temperature β ′:

pβ′(φ) ∝ e−β′Eφ = Ce−(β′−β)Eφpβ(φ) ,

where C is a proportionality constant (which depends on β and β ′, and will remain
undetermined). Thus, the expectation value of an operator O(φ) at temperature β ′ can
be written as

〈O〉β′ ≡ 1

Zβ′

∫

dφ O(φ) pβ′(φ) =
C

Zβ′

∫

dφ O(φ)e−(β′−β)Eφpβ(φ) =
Zβ

Zβ′

C 〈Oe−(β′−β)E〉β ,

where in the last step the expectation value is evaluated at temperature β. In order to
get the ratio of the partition functions, we can set O = 1, which implies

Zβ′

Zβ
= C 〈e−(β′−β)E〉β .

Thus, finally we obtain the desired result:

〈O〉β′ =
〈Oe−(β′−β)E〉β
〈e−(β′−β)E〉β

.

This implies that the expectation value of any observable at any inverse temperature β ′

can be obtained in terms of expectation values evaluated at β.

This appears to indicate that it should be possible to do a simulation at one value of
β, and use the above formula to obtain results at any other temperature. In reality the
situation is not so simple, due to the finite statistics in realistic simulations. This will be
discussed below.

6.1 Reweighting in Monte Carlo simulations

Let us consider the case that we perform a simulation of some system at coupling
β. The Monte Carlo simulation gives us a series of configurations φ1, φ2 . . . φN , and
measurements of some observable Oi = O(φi).
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Now the standard estimate of the expectation value is:

〈O〉β ≡ 1

Z

∑

{φ}

O(φ) exp [−βEφ] ≈
1

N

N
∑

i=1

Oi

where the first sum goes over full configuration space, and the second over the Monte
Carlo configurations/measurements.

Thus, the reweighting formula becomes

〈O〉β′ =

∑

i Oi e
−(β′−β)Ei

∑

i e−(β′−β)Ei

=
〈O e−(β′−β)E〉β
〈e−(β′−β)E〉β

Note:
∑

i goes over measurements, and Ei, Oi must be measured from the same
configuration.

In practice: perform a Monte Carlo simulation at β, and during the simulation write
down all measurements Ei and various desired operators Oi in a file. After the run, use
the equation above to calculate 〈O〉β.

Example: 2d Ising, V = 162 . . . 1282.
Specific heat (susceptibility of E)

CV = − 1

V

∂〈E〉
∂β

=
1

V
〈(E − 〈E〉)2〉

Susceptibilities diverges with some
critical exponent at the critical point.
In this case, CV ∼ Lα/ν when L → ∞
and we are at β = βc:

Points: simulated values, curves:
reweighted data. Dashed lines show
the error band for 322 (for clarity, not
shown for others). We will return to
errors below.
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6.2 Alternative view: reweighting using histograms

Using histograms (probability distributions from simulations) for reweighting is the “orig-
inal” reweighting method. This is a very intuitive approach but somewhat restricted, and
superseded by the approach in Sec. 6.1.
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For concreteness, consider an Ising model simulation at β. Now the energy E has only
discrete values (E is integer).

• During a MC run (at β), measure the energy histogram (energy probability distri-
bution) hβ(E) just by counting how many times energy value E occurs during the
simulation.

• We know that hβ(E) ∝ n(E) exp(−βE), where n(E) is the number of states (den-
sity of states) at energy E and independent of β.

• Thus, we can reweight h: hβ′(E) ∝ hβ(E) exp[−(β ′ − β)E].

• Finally, if O(E) is a function of energy, we can calculate

〈O〉β′ =

∑

E O(E)hβ′(E)
∑

E hβ′(E)
=

∑

E O(E)hβ(E) exp[−(β ′ − β)E]
∑

E hβ(E) exp[−(β ′ − β)E]

• Main weakness: this works only if O[{s}] = O[E({s})] is a function of energy,
whereas the equation in page 65 works for arbitrary observable.

• If the energy is not discrete, we need to bin the energy values. This causes
binning errors.

Note: histogram method can be obtained directly from the equation on page 65 using
O = δE,E′.)

History of reweighting:
• First proposed in ’59 [Salzburg et al, J.Chem.Phys 30 (1959) 60]
• First used by McDonald and Singer 1967, no success (reweighting range too small?)
• Shown to be very effective by Ferrenberg and Swendsen[PRL 61 (1988) 2635]; now
the whole thing goes under the name F-S reweighting.
• Multihistogram method: F+S [PRL 63 (1989) 1195; Computers in Physics, Sep/Oct
1988]
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Distribution functions:
Histograms of energy can be ob-
tained using Oi = δ(E, Ei):

hβ(E) =

∑

i δ(E, Ei)e
−δβEi

∑

i e
−δβEi

,

where δβ = β ′ − β.

Histograms of 642 Ising model,
with original simulation at β =
βc ≈ 0.44.

The histograms become “ex-
ponentially” worse when the
reweighting distance increases.
This is due to the limited statis-
tics in the tails of the original dis-
tribution. This is what restricts
the range of β where one can
reweight. −2500 −2000 −1500 −1000
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6.3 How far one can reweight?

When we reweight, the expectation value of the histogram shifts sideways. The bulk
and expectation value of the shifted histogram should be well within the original his-
togram, in order not to lose statistical significance and keeping the errors down to a
manageable level (see the histograms on page 67).

We can estimate the allowed reweighting range as follows:

Let us again consider Ising model. If we perform the simulation at β0, we should only
go to β where

|δ〈E〉| = |〈E〉β − 〈E〉β0
| <∼ 〈(E − 〈E〉β0

)2〉1/2
β0

= [V CE(β0)]
1/2,

where CV is the specific heat (∼ susceptibility of energy). Because

V CV = −
(

∂〈E〉
∂β

)

β=β0

= 〈(E − 〈E〉)2〉,

we can Taylor expand

〈E〉β = 〈E〉β0
− (β − β0)V CV

67



to obtain

|δβ| = |β − β0| <∼ [V CV ]−1/2.

This actually should be valid for any observable, not only E, if we substitute the corre-
sponding susceptibility.
Thus, we see that valid reweighting range is <∼ natural ‘fluctuation’ range in the simula-
tion, in order not to lose statistical signficance.

• Simulation at a non-critical point: now CV is a finite number (with regular β-
dependence). Thus, in this case ∆β ∝ 1/

√
V . This is a rule of thumb in reweight-

ing: the allowed range is reduced as V −1/2 as volume increases (at constant β).

• At a critical point (as in our Ising model example): ∆β ∝ 1/V x, where x is some
critical exponent. In our case above, the specific heat behaves as CV ∼ V α/(dν),
and we obtain x = (1 + α/(dν))/2, where d = 2 is the dimensionality.

PRAGMATIC VIEW: check that the ‘mass’ of the reweighted histogram does not shift
too far away into tails of the original histogram, where there is insufficient amount of
data! Naturally, more statistics → slightly larger range.

The scaling laws are bad:

• Reweighting range ∝ 1/
√

V .

• If we insist on increasing range by a factor of n, δβ → nδβ, and if we assume that
δ〈E〉nδβ = nδ〈E〉δβ , then we have to increase statistics by a factor ∼ exp[n2 − 1]
to achieve comparable accuracy (tail of a Gaussian)!

The reweighting range cannot practically be increased by statistics. Much better
to perform new simulations with different β.

6.4 Error analysis in reweighting

• Errors analyzed in previous plot using jackknife error analysis Use of jackknife or
bootstrap methods strongly recommended! (Return to that in Sec. 8.)

• Errors increase when reweighting distance increases. Must not do reweighting
too far from original simulation point! (how far?)
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• Note: using normal error analysis in upstairs and downstairs of

〈O〉β =
〈O e−(β−βc)E〉βc

〈e−(β−βc)E〉βc

is usually not reliable: the exponential factors make the ‘observable’ inside 〈·〉
very skewed. Furthermore, this overestimates errors, since the deviations up and
down are correlated!

• Calculating the errors using jackknife (for details of jackknife, see Sec. 8)

1. Divide the data (N measurements) into M blocks, length m = N/M ≫ τ
(this to make individual blocks statistically independent).

2. For each m, delete block m from the full data, and calculate

〈O〉mβ =

∑

i Oi e
−(β−βc)Ei

∑

i e
−(β−βc)Ei

where the sums go over the N − m measurements which do not belong to
block m.

3. Calculate the error through

δ〈O〉β =

√

√

√

√

M − 1

M

∑

m

(〈O〉mβ − 〈O〉β)2

where 〈O〉β is either the full dataset reweighted value, or, usually the average
of 〈O〉mβ . The difference is very small, but the average of 〈O〉mβ is used for
bias correction.

6.5 Reweighting with respect to arbitrary parameters

Above we discussed reweighting wrt. the inverse temperature β. However, it can be
done using any parameter of the action/energy function.

As an example, let us consider reweighting with respect to external magnetic fieldh in
the Ising model

Zβ,h =
∑

s

exp[−βE + hM ] where M =
∑

i

si

If the original simulation was performed with hs, reweighting in h is completely analo-
gous to eq.2:

〈O〉h =

∑

i Oi e
(h−hs)Mi

∑

i e
(h−hs)Mi
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Thus, even if originally hs = 0 (no field in the original simulation), we can reweight to
finite external field.

Reweighting can be done simultaneously in β and h. (How? And why the original
histogram reweighting is not practical in this case?)

Magnetization his-
togram p(M), size
642, in simulation
h = 0, and β = βc
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Let us consider now general reweighting wrt. arbitrary parameters ga, which couple to
action/energy function S(~g; {φ}). The partition function is

Z~g =
∫

[dφ] exp[−S(~g; {φ})]

Simulation is performed with ga = ga
0 , and we measure Si(~g0) = S(~g0; {φ}i) and Si(~g) =

S(~g; {φ}i) (note that configs are generated with S(~g0; {φ})). Reweighting observable O:

〈O〉~g =

∑

i Oi exp[−(Si(~g) − Si(~g0))]
∑

i exp[−(Si(~g) − Si(~g0))]

Often the action factorizes to form S =
∑

a gaSa. In this case it is sufficient to measure
the “pieces” of action Sa, and we can reweight wrt. any component ga.
g1 = −β, S1 = E recovers standard Ising reweighting.
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7 Multiple histogram reweighting

NOTE: this section is extra mate-
rial, but included here for refer-
ence. This is still very useful for
practitioners of the art!

Multiple histogram method joins
together several sets of data,
run at different β-values, in an
optimized way.

Example:
Susceptibility CV , volume 322.
The data from 3 runs is joined
together with multiple histogram
reweighting (blue curve). Errors
are much smaller than with sin-
gle histogram reweighting. 0.410 0.420 0.430 0.440 0.450
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Multiple histogram reweighting is a powerful method – should be part of standard tool-
box for everybody who can join points from different simulations. However, somewhat
cumbersome to use.

• Perform R Monte Carlo simulations, at couplings βi, with length Ni.

• Measure the energy distributions pi(E) = Hi(E)/Ni, and the autocorrelation time
τi.

• True distribution is given by

pi(E) = n(E) e−βiE+fi,

where n(E) is the density of states (does not depend on β), and fi is (dimension-
less) free energy: fi = − log Zβi

.

7→ Each of the simulations gives us an estimate of n(E) = pi(E)eβiE−fi (we don’t
know fi, so that the normalization is unknown). Since the MC runs were per-
formed at different βi, each of the run yields a reliable estimate of n(E) only at
limited range of E.
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• Optimization: we obtain an improved estimate for n(E) by combining all runs
together:

n(E) =
R
∑

i=1

ri(E)pi(E)eβiE−fi , where
R
∑

i=1

ri(E) = 1 for all E.

Note that the relative weights ri(E) are independent at each E: → optimization.

• ri(E) are determined by minimizing the (error)2 in n(E) (now follows somewhat
technical derivation):

– What is the uncertainty in histogram values? Assuming that Hi(E) is Poisson
distributed around the ‘true’ value H̄i(E), we obtain

δ2Hi(E) = giH̄i(E) = giNin(E)e−βiE−f .
Here gi = 1 + 2τi takes into account the autocorrelations in run i.

– Thus, (error)2 in n(E)

δ2n(E) =
∑

i

r2
i (E)

δ2Hi(E)

N2
i

e2(βiE−fi) =
∑

i

r2
i (E)

gin(E)

Ni
eβiE−fi

– Minimize δ2n(E) wrt. ri(E) with condition C ≡ ∑

i ri(E) = 1. Use Lagrange
multipliers (try it):

∂

∂ri(E)
[δ2n(E) + λC] = 0 7→ ri(E) =

Nig
−1
i e−βiE+fi

∑R
j=1 Njg

−1
j e−βjE+fj

• Thus, the optimized expression for n(E) is

n(E) =

∑R
i=1 g−1

i Hi(E)
∑R

j=1 Njg
−1
j e−βjE+fj

• The coefficients fi are then determined by solving
e−fi =

∑

E

n(E)e−βiE

To solve this equation use some iterative method (Newton-Raphson). fi’s are
determined up to an additional constant.

• Observable expectation values:

〈O〉β =

∑

E O(E)n(E)e−βE

∑

E n(E)e−βE

As with the single histogram method, this can be formulated without resorting to Hi(E).
Let Ea

i be the energy measurement number a (a = 1 . . .Ni) from run number i. The
expression for the free energy fβ becomes

e−fβ =
R
∑

i=1

Ni
∑

a=1

g−1
i e−βEa

i

∑R
j=1 Njg

−1
j e−βjEa

i
+fj

.
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fi’s are then solved by setting e−fi = e−fβi , in analogy to the second eq. in the box
above. The expectation value of O at reweighted β:

〈O〉β =
R
∑

i=1

Ni
∑

a=1

Oa
i g

−1
i e−βEa

i
−fβ

∑R
j=1 Njg

−1
j e−βjEa

i
+fj
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