1. Let us consider the harmonic oscillator as discussed in the lecture notes. Defining

$$\hat{a} = \sqrt{\frac{m\omega}{2}}\hat{x} + \frac{i}{\sqrt{2m\omega}}\hat{p}$$
 $\hat{a}^{\dagger} = \sqrt{\frac{m\omega}{2}}\hat{x} - \frac{i}{\sqrt{2m\omega}}\hat{p}$

and using

$$[\hat{x}, \hat{p}] = i,$$
 $[\hat{x}, \hat{x}] = [\hat{p}, \hat{p}] = 0$

show that

- a) $[\hat{a}, \hat{a}] = [\hat{a}^{\dagger}, \hat{a}^{\dagger}] = 0, [\hat{a}, \hat{a}^{\dagger}] = 1,$
- b) $\hat{H} = \omega(\hat{a}^{\dagger}\hat{a} + \frac{1}{2})$
- c) $\hat{N} \equiv \hat{a}^{\dagger} \hat{a}$ is hermitean (and has real eigenvalues)
- d) If we define states $|n\rangle$ so that $\hat{N}|n\rangle \equiv n|n\rangle$ and $\langle n|n\rangle = 1$, show that $\hat{a}^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$ and $\hat{a}|n\rangle = \sqrt{n}|n-1\rangle$.
- 2. Consider the Fock-space of scalar field theory. Thus, define 2-particle states through $|\vec{k}_1, \vec{k}_2\rangle \equiv \hat{a}^{\dagger}_{\vec{k}_1} \hat{a}^{\dagger}_{\vec{k}_2} |0\rangle$.
 - a) Show that $|\vec{k}_1,\vec{k}_2\rangle=|\vec{k}_2,\vec{k}_1\rangle$ (states are symmetric wrt. permutations, i.e. bosons)
 - b) What is $\langle \vec{q}_1, \vec{q}_2 | \vec{k}_1, \vec{k}_2 \rangle$?
- 3. Defining

$$\hat{N} \equiv \int d^3 \vec{p} \, \hat{a}_{\vec{p}}^\dagger \, \hat{a}_{\vec{p}}, \qquad : \hat{H} : \equiv \int d^3 \vec{p} \, E_{\vec{p}} \, \hat{a}_{\vec{p}}^\dagger \, \hat{a}_{\vec{p}},$$

calculate $\hat{N}|\vec{k}_1, \vec{k}_2, \dots \vec{k}_n\rangle$ and $:\hat{H}: |\vec{k}_1, \vec{k}_2, \dots \vec{k}_n\rangle$.