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Engineering the quantum transport of atomic
wavefunctions over macroscopic distances
A. Alberti, V. V. Ivanov, G. M. Tino and G. Ferrari*
The manipulation of matter waves had an important role in
the history of quantum mechanics. The first experimental
validation of matter-wave behaviour was the observation of
diffraction of matter by crystals1, followed by interference
experiments with electrons, neutrons, atoms and molecules
using gratings and Young’s double slit2–5. More recently,
matter-wave manipulation has become a building block for
quantum devices such as quantum sensors6 and it has an
essential role in a number of proposals for implementing
quantum computers7,8. Here, we demonstrate the coherent
control of the spatial extent of an atomic wavefunction by
reversibly stretching and shrinking the wavefunction over a
distance of more than one millimetre. The quantum-coherent
process is fully deterministic, reversible and in quantitative
agreement with an analytical model. The simplicity of its
experimental implementation could ease applications in the
field of quantum transport and quantum processing.

Cold atomic gases trapped in optical lattices (large and periodic
ensembles of optical microtraps created by interfering optical laser
beams) provide ideal tools for studying quantum transport in
different regimes9,10 and quantum many-body systems in periodic
potentials11–15. One of the challenges in this field is to coherently
transfer matter waves betweenmacroscopically separated sites. This
would provide a mechanism to couple distant quantum bits and
ultimately would lead to scalable quantum-information processing
with cold atoms in optical lattices16. Recently, it was demonstrated
that spatially driven lattice potentials in the presence of a linear
potential can induce a coherent delocalization of a matter wave17
when the driving is applied at the Bloch frequency νB, that is, the
linear potential between adjacent sites expressed in frequency units.
The delocalization occurs at integer multiples of νB because of the
resonant coupling between Wannier–Stark levels within the same
band. The resonances are characterized by a sinc2(π t1ν) spectral
profile, where t is the driving time and 1ν is the detuning of
the driving from the resonant frequency. The sinc response here
arises from the influence on the tunnelling current of the relative
phase φ between the driving and the site-to-site quantum phase
in the broadened wavefunction. When φ lies between 0 and π the
wavefunction expands, whereas when it lies between π and 2π the
wavefunction shrinks. In particular, when φ= 2π the wavefunction
returns to the starting point. Such a reversible behaviour is expected
provided that the evolution of thewavefunction is fully coherent.

Anymechanism introducing loss of coherence would in fact lead
to a non-reversible broadening. However, in a decoherence-free
regime, it should be possible to engineer the spatial extension of the
wavefunction using the frequency offset and the amplitude of the
driving as tuning knobs. Here, we experimentally demonstrate this
new technique ofmatter-wavemanipulation by showing that coher-
ent delocalization results in an extended distribution corresponding
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Figure 1 | Experimental set-up and atomic spatial distribution during the
reversible control of transport. Left: cold strontium atoms are trapped in
an optical lattice potential aligned along the Earth’s gravity field g. The
standing wave originating the lattice potential is axially driven by applying a
sinusoidal voltage to the PZT holding the retro-reflecting mirror. The
diagram is not to scale. Right: spatial distribution of the atoms for various
durations T of a non-resonant driving (0 to 3.8 s from left to right). The
colour scale is adapted to each picture so that the visibility is maintained
with the varying atomic densities. With the maximum modulation and a
frequency detuning1ν set to about 260 mHz, the transport extends on the
millimetre scale and shows a revival time of 3.8 s. At T=0 the in situ r.m.s.
spatial width is 31 µm, whereas at T= 3.8 s it becomes 40 µm.

to the size of the broadened wavefunction. This is demonstrated
by observing in situ the breathing of the wavefunction under
non-resonant driving conditions, and through a self-interference
technique based on time-of-flight (TOF) expansion. Our experi-
mental findings are supported by a theoretical model with which
we can determine analytically the spatial wavefunction under the
action of the driving18,19.

To drive (that is, modulate) the phase of the lattice potential, we
apply a sinusoidal voltage (with frequency νPZT) to the piezoelectric
transducer (PZT) that supports the retro-reflecting mirror of the
standing-wave dipole trap (Fig. 1). In a first set of measurements,
we test the spatial coherence of the broadened wavefunction by
observing the periodic breathing of the atomic distributionwhile we
drive the PZT with a non-zero frequency detuning1ν= νPZT−νB.
Figure 1 shows the image of the atomic distribution under hard
driving conditions. The frequency detuning 1ν is set to about
0.26Hz such that the revival period, equal to1ν−1, is about 4 s and
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Figure 2 | Dynamics of the atomic extent under driving at different
frequency detunings from resonance. For short times, the minimum size
corresponds to the size of the non-driven atomic cloud. a–c, Detuning
1ν= νPZT−νB=+5 Hz (a),1ν=−5 Hz (b) and1ν=−0.5 Hz (c). The
driving amplitude is set to about 1 (a,b) and 0.2 (c) lattice sites peak-to-
peak. The reported spatial extent is defined as the r.m.s. radius calculated
on the atomic distribution. Each data point is the average of five measure-
ments and the error bars show the standard deviation of the average
calculated on the corresponding data set. The damping observed on the
periodic dynamics is attributed mostly to the off-resonant scattering of the
trapping photons. From the data in c, we infer a 1/e− damping time of about
28 s. In each graph, the fitted line gives a periodicity consistent with1ν−1.

the amplitude of the driving is set to its maximally experimentally
accessible value, 10 lattice sites peak-to-peak. The spatial profile is
initially Gaussian, corresponding to the initial spatial distribution
of the atoms in the magneto-optical trap. The profile then evolves
into a more complex shape as a result of the wavefunction
broadening18,19, but then at the revival the distribution returns to its
initial profile. Starting from a size of 31 µm, it reaches an extension
larger than 1.5mm, and then it returns to a size of 40 µm. In other
words, the distribution increases its size by a factor larger than
20 and then returns to almost its initial value. The observation of
the exact refocusing to the original size is hampered by technical
limitations (see Fig. 1). Intermediate values of the spatial extent can
be obtained in a reproducible and reversible way by varying the
amplitude or frequency detuning1ν of the driving voltage.

In Fig. 2, we show the time evolution of the spatial extent for
different values of frequency detuning 1ν. With 1ν equal to +5
and −5Hz, the breathing shows a revival with the expected period
of 5Hz, and a constant visibility on a 1 s timescale, regardless of the
sign of the frequency detuning.With1ν=0.5Hz, again the atomic
distribution shows a breathing at a frequency equal to1ν, and from
the reduction of the oscillation amplitude over time we can infer
a e−1 damping time of 28 s. The results presented in Figs 1 and 2
cannot be explained classically and show a quantitative agreement
with the analytic expression of the wavefunction expected for the
driven potential18,19. This implies that we manipulate and directly
observe the spatial wavefunction on a length scale larger than 1mm.

To study the coherence properties of themodified wavefunction,
we measure the interference of the wavefunction with itself. To this
end, the wavefunction is expanded in TOF after an adiabatic release
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Figure 3 | Transient effect of the driving on the ballistic expansion of the
sample. The TOF is fixed to 15 ms and a resonant driving is applied for the
amount of cycles reported on each row. Left: two-dimensional density
profile. In the pictures, the gravity and the lattice are horizontally oriented.
Right: the atomic density integrated along the transverse direction of the
lattice. The red line is the distribution expected from the ballistic expansion
of the analytical expression of the broadened wavefunction (see the
Methods section). We maintain the same colour scale on the
two-dimensional distributions and the vertical scale on the integrated
density profiles for the five cases. The appearance of the narrow peak in the
ballistic expansion results from a transient interference effect to which
contributes the entire population of the sample.

from the lattice potential. We record the evolution for an expansion
varying between 0 and 25ms under various driving conditions.
First, we consider the case of resonant driving (1ν= 0). An integer
number of sinusoidal cycles, up to 120 (equivalent to 210ms when
νB = 574.14Hz), is applied to the PZT such that the wavefunction
broadens proportionally with time. The atomic distribution is then
probed in TOF 300ms after the beginning of the driving, and after
switching off the lattice potential adiabatically on a 20 µs timescale.
Figure 3 shows the changes in the expansion after 15ms of TOF
for various broadening conditions. In the absence of a driving, the
sample expands as expected yielding a Gaussian profile. When we
drive the system, we clearly observe the appearance on a transient
time of a non-Gaussian distribution characterized by a narrow
peak emerging from the broader pedestal. This transient effect
results from the interference among the probability amplitudes
originating from the different portions of the wavefunction and
it is confirmed by a simulation of the ballistic expansion of the
broadened wavefunction (see theMethods section).

We verified that the narrow peak in TOF does not arise from
a trivial selection of a given momentum class nor a temperature
reduction for a fraction of the population. In fact, for the conditions
of Fig. 3, the overall number of atoms does not change with the
number of applied cycles, whereas the atomic distribution gathers
in the central peak as a phenomenon of interference alone. As an
extra check, we verified that for longer TOF the same Gaussian
distribution in the momentum space is observed both with and
without driving. For a fixed duration of the TOF, the narrow peak
reaches maximum visibility compared with the pedestal when the
size of the broadened wavefunction is a fraction of the size of the
non-driven and ballistically expanded sample.

In addition, for a static lattice (that is, without a driving applied
to the PZT), the position of the interference peak depends on the
time spent in the lattice potential exhibiting a periodic dynamics
at the Bloch frequency νB. This result, shown in Fig. 4, reflects the
time evolution of the site-to-site phase differences in the broadened
wavefunction that is induced by the gravity potential. This dynamics
is confirmed by numerical simulations of the expansion of the
wavefunction. In the absence of driving, on the other hand, the
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Figure 4 | Ballistic expansion of the broadened wavefunction after
various storage times in a static potential. First, the atomic wavefunction
is stretched to a fixed size. Then the atoms are kept in the static lattice
potential for a varying time, and finally they are probed after a fixed ballistic
expansion. The combined effect of the static lattice potential and the
Earth’s gravity field induces a linear increase of the site-to-site phase in the
broadened wavefunction, which is directly observable in the ballistic
expansion as a periodic evolution of the interference peak keeping a fixed
TOF duration of 15 ms. From top to bottom, the hold time in the static
lattice increases linearly over one Bloch period (about 1.75 ms).

shape of the distribution after ballistic expansion shows neither
an interference peak nor a periodic signal. Originated from the
dynamics of the wavefunction’s phase gradient, this phenomenon
is in analogy with Bloch oscillations that occur in the momentum
space for atoms at sub-recoil temperatures20. On the other hand,
the periodic dynamics of the interference peak happens regardless
of the initial temperature of the sample. This may find applications
in the realization of precise force sensors using species difficult to
cool to sub-recoil temperatures.

The pictures in Fig. 3 and the related analysis are made
by starting the TOF at the point where the site-to-site phase
difference is zero or, equivalently, the emerging narrow peak is
centred on the pedestal.

The dynamics that we observe, both in situ and in TOF,
can be described starting from the expression of the broad-
ened wavefunction18,19

|n(t )〉=
+∞∑

n′=−∞

e−in
′2πνBt eiπ(n−n

′)1ν t
× Jn−n′

(
sin(π1ν t )

2Ω
π1ν

)
|n′〉
(1)

of the initial state |n〉, where |m〉 are the Wannier–Stark eigenstates
of the static Hamiltonian (with the gravity potential and the
non-modulated lattice) labelled by the index m of their position
expressed in lattice units, t is the time of driving, Ω is a coefficient
accounting for the tunnelling rate among the lattice barriers and
Jn are the Bessel functions of the first kind. The assumption that
the initial state corresponds to the Wannier–Stark eigenstate |n〉 is
consistent with the fact that the trapped atoms are derived from a
thermal sample at a temperature higher than the recoil temperature
and they uniformly fill the first band. The thermal de Broglie
wavelength is shorter than the lattice period, so when we load
the atoms into the lattice potential the coherence degree among
adjacentWannier–Stark eigenstates is negligible.
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Figure 5 | Dynamics of the ballistic expansion under non-resonant
driving. The reversible dynamics of the spatial extent have their
counterpart in the ballistic expansion signal. From left to right: in situ
distribution, 10 ms and 15 ms TOF. a, No driving. b, Maximum expansion.
c, First spatial revival. In b, the driving conditions are the same as those in
Fig. 3 for 80 cycles, except that here we use a 2.28 Hz frequency detuning
of the driving field with respect to the Bloch frequency. In c, the interference
peak is absent, denoting, as expected, the revival of the wavefunction also
in the momentum space. The displacement along the horizontal axis for
different TOF times corresponds to the free fall in the Earth’s gravity field.

In addition, we verified that the wavefunction also exhibits
revivals in the interference pattern for the TOF distribution under
non-resonant driving. In Fig. 5, we compare the TOF profiles taken
for different expansion times under three different conditions:
without driving, at maximum expansion and at the spatial revival,
while the frequency detuning 1ν is set to about 2Hz. The
TOF expansion at maximum broadening is equivalent to that
obtained under resonant driving except that now the distribution
is deliberately asymmetric because of a different choice of the
site-to-site phase difference at the release (same as in Fig. 4, case 5).
On the other hand, the TOF expansion at the revival is the same as
that in the absence of driving.

The control of transport discussed here proves in its simplicity
that matter waves can be coherently manipulated over macroscopic
distances in optical lattice potentials. The proposed method can
be extended to control travelling waves19,21, with applications
in guiding and splitting atomic wavefunctions. This suggests
possible implementations of quantum gates exploiting controlled
interactions with ultracold atoms16,22.

Methods
Experimental set-up and procedure. The experimental set-up was described
previously in ref. 23. About 106 88Sr atoms are laser cooled to a temperature of
1 µK and are subsequently loaded into a vertical lattice potential produced by the
dipole force of a λL = 532 nm laser field. The lattice is formed by retro-reflecting
the laser light with a mirror mounted on top of a PZT. The phase of the optical
lattice, defined to be zero at the surface of the mirror, is modulated by applying a
time-dependent voltage to the PZT with a maximum excursion of 10 lattice sites
peak-to-peak. The experimental set-up is supported on pneumatic suspensions to
suppress seismic noise in the lattice reference. This, on the other hand, introduces
small instabilities of the orientation of the set-up, which result in drifts on the
definition of νB. These, in turn, are responsible for the difficulty to resolve the exact
moment of refocusing of the distribution, especially at long interrogation times and
fast tunnelling rate as reported in Fig. 1. The depth of the lattice potential is typically
eight recoil energies ER (ER = h2/2mλ2L = kB×381 nK) along the optical axis of the
trapping beam and it decreases exponentially in the radial direction owing to the
Gaussian spatial profile. As initially the atoms are hot with respect to the recoil
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temperature, when they are loaded into the lattice potential they occupy almost
uniformly the first band and, with decreasing weight, the higher bands. Owing to
Landau–Zener tunnelling, the atoms have a lifetime shorter than 100ms in all of
the bands except for the first one where the atoms live longer than our experimental
timescale. We exploit this fact to select only the atoms that lie in the first band by
initially waiting a time of 100ms in the static potential before applying the driving.
The atomic distribution is measured by absorption imaging of a resonant laser
beam detected on a CCD (charge-coupled device) camera.

Calculation of the spatial distribution after ballistic expansion. We calculated
the spatial distribution after ballistic expansion of the broadened sample by
applying the free-particle evolution operator to the wavefunction in equation (1).
We chose the same conditions as in Fig. 3, where 1ν = 0 and the speed of
broadening Ω = 430 sites s−1. We numerically carried out the calculation by
Fourier transforming |n(t )〉 in the momentum space where the free-particle
Hamiltonian is diagonal. After 15ms of TOF, we reconstructed the wavefunction
in the real space. Finally, we applied a convolution with a Gaussian distribution
30 µm wide (r.m.s.) which accounts for the initial size of the atomic sample just
after the loading into the lattice potential.
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