
763645S SUPERCONDUCTIVITY Solutions 3 Fall 2015

1. Derive the equation

− dt
∮

da · (E×H) =

∫
dV (E · dD + H · dB + E · jF dt ).

Solution:
Here we are going to need the Gauss law (GL), a vector identity (VI) and two of the
Maxwell equations (MEs):∮

S

da ·B =

∫
V

dV ∇ ·B ∇ · (A×B) = B · (∇×A)−A · (∇×B)

∇×H =
∂D

∂t
+ jf ∇× E = −∂B

∂t
.

Using these the derivation goes like

− dt
∮
S

da · (E×H)
GL︷︸︸︷
= − dt

∫
V

∇ · (E×H)

VI︷︸︸︷
= − dt

∫
V

dV [H · (∇× E)− E · (∇×H)]

MEs︷︸︸︷
= − dt

∫
V

[
−H · ∂B

∂t
− E ·

(
∂D

∂t
+ jf

)]
=

∫
V

dV (H · dB + E · dD + E · jf dt )

Note: Here we have simply defined dB = ∂B
∂t

dt etc. A “variational differential” notation
δB might be more appropriate, since the differentials depend on position.

Note 2: This at least “justifies” the appearance of the “VH · dB” term in the differential
for internal energy (dE) and thus the Helmholtz free energy (dF ), when we assume that
∂D
∂t

and the “free currents” jf vanish. Existence of screening supercurrents induced by the
applied magnetic field are still allowed, because they are not of the “free” variety. They
are (I think) to be understood as the “magnetization currents” or “bound currents” ∇×M
in Eq. (314) of the lecture notes.

2. In the lectures it was claimed that when the magnetic flux density B inside the sample
changes, the current source has to do a work VH · dB in order to keep the current going
to the coil constant. Prove this more accurately. In order for the field to be homogeneous



inside the sample (with b− a� r) and zero elsewhere, it is easiest to think of a toroidal
coil surrounding a toroidal sample (see figure).

Solution
The power of a current source is P = UI, where U is the voltage and I the current. The
work done in a small time increment dt is dW = P dt = UI dt . This work should be
now calculated for the toroidal coil sketched in Fig. Let us first calculate the current I
and after that the voltage U.

Let us assume that there is a uniform H field inside the coil. Applying Maxwell equations
with the ignorance of ∂D/∂t we get

∇×H = jf∫
S

da ·∇×H =

∫
S

da · jf∫
l

dl ·H = NI

2πrH = NI

I =
2πrH

N

where the path l is the boundary of the surface S and the surface S a circle of radius r
inside the torus. N is the number of loops and I the current.

Let us now assume that the B field inside the coil changes although the current I is
constant. This is possible if the material of the coil changes somehow, for example the
temperature alters the permeability µ (which is what happens in the Meissner effect: µ
drops to zero). The voltage U between the two ends of the wire going around the coil is



path integral (following the wire) of the electric field:

U = −
∫
r

dr · E
Stokes theorem︷︸︸︷
≈ −N

∫
A

da ·∇× E

ME︷︸︸︷
= N

∫
A

da · ∂B
∂t

= N
d
dt

∫
A

da ·B

= N
d(BA)

dt

where B is the magnitude of the uniform B field, A the cross-sectional area of the coil
(A = π(b− a)2/4, assuming a circular cross-section), and N the number of wire loops.

Now using U dt = NA dB and I = 2πrH/N , the work is written explicitly:

dW = UI dt = 2πrHA dB = V H dB .

with V = 2πrA. Furthermore, the fields H and B are parallel in a toroidal coil. In general
we may expect

dW = VH · dB .

3. Calculate the latent heat and the change in the specific heat in a normal metal-superconductor
phase transition, using

Hc(T ) = Hc(0)

[
1−

(
T

Tc

)2
]
.

Sketch the results as a function of temperature.

Solution
The latent heat is defined as the finite heat release/absorption occurring at a phase tran-
sition, during which the temperature remains constant. For the superconducting phase
transition ∆Q = T∆S = T [Ss(T,H) − Sn(T,H)], where T is the considered transition
temperature (T = Tc at H = 0). In the lectures the change of entropy is considered and
an expression for it is derived

∆S = Ss(T,H)− Sn(T,H) = V µ0Hc(T )
dHc(T )

dT
.

By using the expression given for the critical field, the latent heat is

∆Q = −2V µ0H
2
c (0)

[(
T

Tc

)2

−
(
T

Tc

)4
]
.
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Figure 1: (LEFT) The latent heat (1) and (RIGHT) the specific heat (2). At critical temperature
Tc where external H field must vanish, the superconducting phase transition is of the second
order: vanishing latent heat (∆Q = T∆S = 0) but non-zero change in the specific heat (∆C 6=
0). In the region 0 < T < Tc the jump ∆Q is finite, and the phase transision is thus of first
order. Interestingly, at T ≈ 0.58Tc the jump ∆C vanishes, but this is also a first-order case
because ∆Q is finite.

This can be modified to a simpler form

∆Q = −A(x2 − x4). (1)

where x is the reduced temperature x = T/Tc and A includes all the other parameters.

Similarly for the discontinuity of the specific heat is derived an expression in lectures:

∆C = TV µ0

[(
dHc(T )

dT

)2

+Hc(T )
d 2Hc(T )

dT 2

]
.

After calculating open the dervatives one arrives at the formula

∆C =
2V µ0H

2
c (0)

Tc

(
3T 3

T 3
c

− T

Tc

)
which is again simplified to the form

∆C = B(3x3 − x). (2)

The latent heat and specific heat are sketched in Fig. 1.

4. Consider a superconducting wire with a radius R. Calculate the maximum supercurrent
Ic that can flow so that the field caused by the current itself does not exceed the critical
field Hc at the surface of the wire.

Solution
From the Maxwell equation

∇×B = ε0µ0
∂E

∂t
+ µ0j



one obtains, by using the Stokes theorem and the stationarity assumption ∂E/∂t = 0,
that ∮

B · dl = µ0

∫
da · j.

Integrating around a circle of radius r around the wire and assuming B = B(r)θ̂, we
obtain

2πrB(r) = µ0I,

where I =
∫

da · j is the total current flowing in the wire. Thus the field at r > R is
B(r) = µ0I/(2πr). (We need not care about what it is for r < R.)

The critical current Ic is the current which gives an H field of the critical magnitude Hc

on the surface of the wire at r = R. Since outside the sample we have simply B = µ0H,
this corresponds to a B field of magnitude Bc = µ0Hc. So the critical current satisfies
2πRBc = µ0Ic, giving

Ic = 2πRBc/µ0 = 2πRHc. (3)

5. Estimate the Fermi temperature for aluminum using the mass density ρ = 2.7 g/cm3,
the atomic weight and assuming 3 (noninteracting) conducting electrons/atom with an
effective mass of a free electron me. Calculate the ratio Tc/TF .

Solution
In lectures it was stated a relation between Fermi wave vector kF and electron density
ρ = N/V :

kF = (3π2ρ)1/3.

The Fermi temperature is defined through the Fermi energy:

TF =
εF
kB

=
~2k2F

2mekB
=

~2(3π2ρ)2/3

2mekB

The atomic mass of Al is 27u, with u = 1.6605 · 10−27 kg, and the mass density was given
as 2700 kg/m3. Thus the number density of aluminun electron gas is

ρ = 3ρat = 3
2700 kg/m3

27u
= 1.806 · 1029 1/m3.

Now me = 9.10938 ·10−31 kg, ~ = 1.054571 ·10−34 Js, and kB = 1.38065 ·10−23 J/K. After
calculations we get TF = 1.36 · 105 K. The critical temperature for Al is Tc = 1.196 K.
The ratio

Tc
TF

=
1.196 K

1.36 · 105 K
= 9 · 10−6

then tells us that the electron system is very degenerate at the temperatures relevant for
superconductivity: essentially only states below the Fermi surface, k < kF , are occupied.


