
4. Classical phase space

4.1. Phase space and probability density
We consider a system of N particles in a d-dimensional
space. Canonical coordinates and momenta

q = (q1, . . . , qdN )

p = (p1, . . . , pdN)

determine exactly the microscopic state of the system.
The phase space is the 2dN -dimensional space {(p, q)},
whose every point P = (p, q) corresponds to a possible
state of the system.
A trajectory is such a curve in the phase space along
which the point P (t) as a function of time moves.
Trajectories are determined by the classical equations of
motion

dqi
dt

=
∂H

∂pi
dpi
dt

= −∂H
∂qi

,

where

H = H(q1, . . . , qdN , p1, . . . , pdN , t)

= H(q, p, t) = H(P, t)

is the Hamiltonian function of the system.
The trajectory is stationary, if H does not depend on
time: trajectories starting from the same initial point P
are identical.
Trajectories cannot cross: if trajectories meet at a point,
they must be identical!
Let F = F (q, p, t) be a property of the system. Now

dF

dt
=
∂F

∂t
+ {F,H},

where {F,G} stands for Poisson brackets

{F,G} ≡
∑

i

(
∂F

∂qi

∂G

∂pi
− ∂G

∂qi

∂F

∂pi

)

.

We define the volume measure of the phase space

dΓ =

dN∏

i=1

dqidpi
h

= h−dNdq1 · · ·dqdNdp1 · · · dpdN .

Here h = 6.62608 · 10−34Js is the Planck constant. (Often
dΓ has 1/N ! in front to remove degeneracy caused by
identical particles.)
Note: [dq dp] = Js, so dΓ is dimensionless.
Note: In classical dynamics the normalization is
irrelevant. In quantum mechanics, it is natural to choose
h = Planck constant.
Note: ∆0Γ = 1 corresponds to the smallest possible
volume element of the phase space where a point
representing the system can be localized in accordance
with the QM uncertainty principle. The volume
∆Γ =

∫
dΓ is then roughly equal to the number of

quantum states in the part of the space under
consideration.
The ensemble or statistical set consists, at a given
moment, of all those phase space points which correspond
to a given macroscopic system.
Corresponding to a macro(scopic) state of the system
there are thus a set of micro(scopic) states which belong
to the ensemble with the probability ρ(P ) dΓ. ρ(P ) is the
probability density which is normalized to unity:

∫

dΓ ρ(P ) = 1,

and it gives the local density of points in (q, p)-space at
time t.
The statistical average, or the ensemble expectation
value, of a measurable quantity f = f(P ) is

〈f〉 =

∫

dΓ f(P )ρ(P ).

We associate every phase space point with the velocity
field

V = (q̇, ṗ) =

(
∂H

∂p
,−∂H

∂q

)

.

The probability current is then Vρ. The probability
weight of an element Γ0 evolves then like

∂

∂t

∫

Γ0

ρ dΓ = −
∫

∂Γ0

Vρ · dS.

d S

G 0

Because ∫

∂Γ0

Vρ · dS =

∫

Γ0

∇ · (Vρ) dΓ,

we get in the limit Γ0 → 0 the continuity equation

∂

∂t
ρ+ ∇ · (Vρ) = 0.

According to the equations of motion

q̇i =
∂H

∂pi

ṗi = −∂H
∂qi

we have
∂q̇i
∂qi

+
∂ṗi
∂pi

= 0,

so we end up with the incompressibility condition

(sourceless)

∇ · V =
∑

i

[
∂q̇i
∂qi

+
∂ṗi
∂pi

]

= 0.
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From the continuity equation we get then

0 =
∂ρ

∂t
+ ∇ · (Vρ)

=
∂ρ

∂t
+ ρ∇ · V + V · ∇ρ

=
∂ρ

∂t
+ V · ∇ρ.

When we employ the convective time derivative

d

dt
=

∂

∂t
+ V · ∇

=
∂

∂t
+
∑

i

(

q̇i
∂

∂qi
+ ṗi

∂

∂pi

)

,

the continuity equation can be written in the form known
as the Liouville theorem

d

dt
ρ(P (t), t) = 0.

Thus, the points in the phase space move like an
incompressible fluid, and the local probability density ρ
remains constant during evolution. Different points
naturally can have different ρ.

4.2. Flow in phase space
The (constant) energy surface ΓE is the manifold
determined by the equation

H(q, p) = E.

If the energy is a constant of motion, every phase point
P i(t) moves on a certain energy surface ΓEi, of dim.
(2Nd− 1).
The expectation value of the energy of the system

E = 〈H〉 =

∫

dΓHρ

is also a constant of motion.
The volume of the energy surface is

ΣE =

∫

dΓE =

∫

dΓ δ(H(P ) − E).

The volume of the phase space is

∫

dΓ =

∫ ∞

−∞
dE ΣE .

Let us consider the time evolution of a surface element
∆ΓE of an energy surface.

Non-ergodic flow: In the course of time the element
∆ΓE traverses only a part of the whole energy
surface ΓE .

Examples: periodic motion; presence of other
constants of motion.

Ergodic flow: Almost all points of the surface ΓE are
sometimes arbitrarily close to any point in ∆ΓE .

⇔
The flow is ergodic if ∀f(P ), f(P ) ”smooth enough”,

f̄ = 〈f〉E

holds. Here f̄ is the time average

f̄ = lim
T→∞

1

T

∫ T

0

dt f(P (t))

and 〈f〉E the energy surface expectation value

〈f〉E =
1

ΣE

∫

dΓE f(P ).

We define the microcanonical ensemble so that its density
distribution is

ρE(P ) =
1

ΣE
δ(H(P ) − E).

Every point of the energy surface belongs with the same
probability to the microcanonical ensemble.
The microcanonical ensemble is stationary, i.e. ∂ρE

∂t = 0
and the expectation values over it temporal constants.
The mixing flow is such an ergodic flow where the
points of an energy surface element dΓE disperse in the
course of time all over the energy surface. If ρ̂E(P, t) is an
arbitrary non stationary density distribution at the
moment t = t0, then

lim
t→∞

ρ̂E(P, t) =
1

ΣE
δ(H(P ) − E) = ρE(P )

and

lim
t→∞

〈f〉 = lim
t→∞

∫

dΓ ρ̂E(P, t)f(P )

=

∫

dΓ f(P )ρE(P )

= 〈f〉E

i.e. the density describing an arbitrary (non equilibrium)
state evolves towards a microcanonical ensemble under
mixing flow.
Liouville theorem (volume element(s) are conserved) +
mixing: a phase space infinitesimal volume element
becomes infinitely stretched and folded and is distributed
over the full energy surface.

4.3. Microcanonical ensemble and
entropy
If the total energy of a macroscopic system is known
exactly and it remains fixed, the equilibrium state can be
described by a microcanonical ensemble. The
corresponding probability density is

ρE(P ) =
1

ΣE
δ(H(P ) − E).
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For a convenience we allow the energy to have some
”tolerance” and define

ρE,∆E(P ) =
1

ZE,∆E
θ(E + ∆E −H(P ))θ(H(P ) − E).

Here the normalization constant

ZE,∆E =

∫

dΓ θ(E + ∆E −H(P ))θ(H(P ) − E)

is the microcanonical state sum or partition function.
ZE,∆E is the number of states contained in the energy
slice E < H < E + ∆E (see the volume measure of the
phase space). In the microcanonical ensemble the
probability is distributed evenly in every allowed part of
the phase space.

Entropy

We define statistical entropy as the quantity (depending
on ρ) which is a) maximized for a physical ensemble and
b) is an extensive quantity, in order to connect to the laws
of thermodynamics. The maximization of the entropy
determines the physical distribution ρ. The Gibbs entropy

S = −kB
∫

dΓ ρ(P ) ln ρ(P )

has these properties, as we shall show shortly.
Let ∆Γi the volume of the phase space element i and ρi
the average probability density in i. The state of the
system is, with the probability

pi = ρi∆Γi,

in the element i and

∑

pi = 1.

We choose the sizes of all elements to be smallest
possible, i.e. ∆Γi = 1. Then

S = −kB
∑

i

∆Γiρi ln ρi = −kB
∑

i

ρi∆Γi ln ρi∆Γi

= −kB
∑

i

pi ln pi,

since ln ∆Γi = 0. If ρ is smooth in the range ∆Γ = W we
have

ρ =
1

W
,

so that

S = −kB
1

W
ln

1

W

∫

dΓ.

We end up with the Boltzmann entropy

S = kB lnW.

Here W is the thermodynamic probability: the number of
all those states that correspond to the macroscopic state
of the system.

A) Let us now show that the maximisation of the Gibbs
entropy gives us microcanonical ensemble, when the
energy of the system is restricted to (E,E + ∆E):

δS = −kB
∫

∆ΓE

dΓ(δρ ln ρ+ ρ δ ln ρ)

= −kB
∫

∆ΓE

dΓδρ(ln ρ+ 1) = 0.

Because δ1 =
∫
dΓδρ = 0, above condition is satisfied if

ln ρ =const. or ρ(P ) =const., when P ∈ ∆ΓE .
S is indeed maximum:

δ2S = −kB
∫

∆ΓE

dΓ
1

2
(δρ)2

∂2(ρ ln ρ)

∂ρ2

= −kB
∫

∆ΓE

dΓ
1

2
(δρ)2

1

ρ
≤ 0.

B) Additive: if we consider 2 separate systems, the joint
probability distribution is ρ12(P1, P2) = ρ1(P1)ρ2(P2),
and dΓ12 = dΓ1dΓ2.

S12 = −kB
∫

dΓ12 ρ12 ln ρ12

= −kB
∫

dΓ1dΓ2 ρ1ρ2(ln ρ1 + ln ρ2)

= −kB(

∫

dΓ1ρ1 ln ρ1 +

∫

dΓ2ρ2 ln ρ2) = S1 + S2

Entropy and disorder

Maximizing the entropy S ⇒ minimization of the
information about the system. In a microcanonical
ensemble complete lack of information (besides the total
energy) means that all states with the same total energy
are equally probable.
Conversely, losing the information (= non-trivial
probability distribution) ⇒ maximizing the entropy.
Maximum of entropy ⇔ maximum of disorder.
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5. Quantum mechanical ensembles

5.1. Quantum mechanical concepts

States and Hilbert space

Quantum mechanical states (using Dirac notation, |ψ〉) of
a system form a Hilbert space H, which is a linear vector
space with inner (scalar) product and associated norm.
Linearity: if |ψ〉 , |ψ′〉 ∈ H, then |cψ + c′ψ′〉 ∈ H, for
c, c′ ∈ C.
The inner product 〈·|·〉 is a mapping H⊗H → C, with

〈ψ|φ〉 = 〈φ|ψ〉∗
〈ψ|αφ+ α′φ′〉 = α〈ψ|φ〉 + α′〈ψ|φ′〉
〈φ|φ〉 ≥ 0

〈φ|φ〉 = 0 ⇔ φ = 0

The norm is ||φ|| = 〈φ|φ〉1/2.
Time evolution is defined by Schrödinger equation:

ih̄
d

dt
|ψ(t)〉 = H |ψ(t)〉 .

If H does not depend on t, the formal solution is

|ψ(t)〉 = exp[− i

h̄
H(t− t0)] |ψ(t0)〉

Operators, eigenvalues and trace

• Physical observable → quantum mechanical operator
A, |ψ〉 → A |ψ〉.

• Conjugated operator A†:

〈ψ|A†|φ〉 = 〈φ|A|ψ〉∗

• Eigenvalue and -vector: A |a〉 = a |a〉. If A† = A
(hermitean), a is real. Eigenvectors form a complete
(orthonormal) basis of the Hilbert space.

• Basis of H: any vector can be written as a sum of
eigenvectors of some operator:

|ψ〉 =
∑

n

ψn |n〉 or |ψ〉 =

∫

daψa |a〉

depending on whether the eigenvectors form a
discrete or continuous set. Here we shall use the
former notation.

• Identity operator I =
∑

n |n〉 〈n|.
Here Pn = |n〉 〈n| is the projection operator to vector
|n〉.

• Spectral representation of operator: if A |n〉 = an |n〉,

A =
∑

n

|n〉 an 〈n| .

• Unitary operator U : UU † = U † U = 1. Thus,
||Uψ|| = ||ψ|| and U correspond to a rotation in
Hilbert space, |n′〉 = U |n〉. Unitary transformations
correspond to a change of eigenbasis.

• Trace of an operator:

TrA =
∑

n

〈n|A |n〉 =
∑

k

ak ,

where the first form is independent of the choice of
basis ketvn, and the second is obtained by choosing
eigenvectors of A.

TrAB = TrBA, TrU †AU = TrA

• If the quantum mechanical state of the system is |ψ〉,
the projection operator corresponding to the state is

ρ = |ψ〉 〈ψ| .

Now expectation values of observables are

〈A〉 = Tr ρA .

Thus, trace in quantum mechanics corresponds to
phase space integral in classical mechanics:

TrA⇐⇒
∫

dΓA(q, p).

Systems of identical particles

Let H1 be a Hilbert space for one particle. Then the
Hilbert space for N particles is

HN = H1 ⊗H1 ⊗ · · · ⊗ H1

︸ ︷︷ ︸

N copies

.

If, for example, |xi〉 ∈ H1 is a position eigenstate the
N -particle state can be written as

|Ψ〉 =
∫ ∫

· · ·
∫

dx1 · · · dxN |x1, . . . ,xN 〉ψ(x1, . . . ,xN ),

where

|x1, . . . ,xN 〉 = |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xN 〉 .

There are two kinds of particles:

Bosons The wave function is symmetric with respect to
the exchange of particles.

Fermions The wave function is antisymmetric with
respect to the exchange of particles.

Note: If the number of translational degrees of freedom
is less than 3, e.g. the system is confined to a two
dimensional plane, the phase gained by the many particle
wave function under the exchange of particles can be
other than ±1. Those kind of particles are called anyons.
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The Hilbert space of a many particle system is not the
whole HN but its subspace:

H =

{
SHN = S(H1 ⊗ · · · ⊗ H1) symm.

AHN = A(H1 ⊗ · · · ⊗ H1) antisymm.

Fock space

Fock space enables us to describe many-particle quantum
states with creation and annihilation operators. Formally,
Fock space is the direct sum of all (anti)symmetrized
N -particle spaces:

F = H(0)
p ⊕H(1)

p ⊕ . . .H(N)
p ⊕ . . .

with H(N)
p = SH(N) for bosons (A for fermions). Fock

space wave function in coordinate representation is a
vector

Ψ = (C,ψ1(ξ
(1)
1 ), ψ2(ξ

(2)
1 , ξ

(2)
2 ), . . .)

where C is a complex number, ξi = (xi, si) (si labels the
spin and other internal degrees of freedom), and ψN is a
fully (anti)symmetric wave function.
Fock space normalized N -particle states can be written as

|n1, n2, . . . , nℓ, . . .〉

where n1, . . . are 1-particle state occupation numbers. In
N -particle state

∑

ℓ nℓ = N . In coordinate space
representation these states can be written as

〈ξ1, . . . , ξN |n1, . . .〉 =
1

√
N !
∏

i ni!

×
∑

P (ξ1,...ξN )

ǫP 〈ξ1|ℓ1〉 . . . 〈ξN |ℓN 〉 ,

where ℓ1, ℓ2, . . . ℓN contain the 1-particle indices of the
N -particle state; i.e. it contains n1 times 1, n2 times 2
etc. Sum is over all permutations P of N coordinates,
and ǫP is 1 for bosons, and ±1 for fermions for even/odd
permutations (Slater determinant).
We can define creation and annihilation operators:

aℓ |n1, . . . , nℓ, . . .〉 = (−1)Pℓ
√
nℓ |n1, . . . , nℓ − 1, . . .〉

a†ℓ |n1, . . . , nℓ, . . .〉 = (−1)Pℓ
√

1 ± nℓ |n1, . . . , nℓ + 1, . . .〉

with upper/lower sign for bosons/fermions, and Pℓ = 0
for bosons, and

Pℓ =
∑

k<ℓ

nk

for fermions.
The symmetry properties and normalization imply for
bosons

[al, ak] = [a†l , a
†
k] = 0, [al, a

†
k] = δl,k,

and for fermions

{al, ak} = {a†l , a
†
k} = 0, {al, a†k} = δl,k,

([A,B] ≡ AB −BA, {A,B } = AB +BA).

Occupation number operator of state |ℓ〉 is

n̂ℓ = a†ℓaℓ

with eigenvalues 0, 1, 2, . . . for bosons and 0, 1 for
fermions. Thus, antisymmetry of fermion states ⇒ Pauli
exclusion principle.
For non-interacting systems the Hamilton operator can be
expressed as

H =
∑

ℓ

Eℓn̂ℓ

when the 1-particle states are eigenstates of H .

5.2. Density operator and entropy
Let H be the Hilbert space a many particle system.
The probability measure tells us the weight that a state
|ψ〉 ∈ H represents a system with given macroscopical
properties. The density operator ρ tells us the probability
of a given state, pφ = 〈φ| ρ |φ〉.

Ensemble

The quantum mechanical ensemble or statistical set can
be defined in a similar fashion as in classical mechanics.
Statistical macrostate is the state determined by
macroscopic parameters, microstate is a particular QM
state in Hilbert space.

Pure state and mixed state

If the quantum mechanical state of a system is fully
known it is in a pure state. In this case the density
operator is a (pure) projection operator

ρ = |Ψ〉 〈Ψ|

Statistical mechanics of a pure state reduces into normal
quantum mechanics; for example 〈A〉 = Tr ρA = 〈Ψ|A |Ψ〉
Mixed state: only the probability pi that the system is
in state ψi is known. Density operator is, in orthonormal
base,

ρ =
∑

n

|ψn〉 pn 〈ψn|

Now Tr ρ = 1. Ensembe expectation values are

〈A〉 = Tr ρA =
∑

i

pi 〈ψi|A |ψi〉 =
∑

i

pi 〈Ai〉 .

The a priori probability: if there is no knowledge of the
actual state of the system every state in H can taken with
equal weight. Then

ρ =
1

N
∑

n

|n〉 〈n| ,

where N = dimH.

Properties of the density operator

Density operator can be any operator with properties

ρ† = ρ

〈ψ|ρ|ψ〉 ≥ 0 ∀ |ψ〉 ∈ H
Tr ρ = 1.
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The density operator associates with every normalized
|ψ〉 ∈ H the probability

pψ = Tr ρPψ = 〈ψ|ρ|ψ〉.

Since ρ is hermitean there exists an orthonormal basis
{|α〉} for H, where ρ is diagonal

ρ =
∑

α

pα |α〉 〈α| .

Here
0 ≤ pα ≤ 1

and ∑

pα = 1.

In this basis

〈A〉 = Tr ρA =
∑

α

pα〈α|A|α〉.

The equation of motion

Let us assume that the ensemble gives (and fixes) the
probabilities pα corresponding to the states |α〉. Now

ρ(t) =
∑

α

pα |α(t)〉 〈α(t)| .

Since the state vectors satisfy the Schrödinger equations

ih̄
d

dt
|α(t)〉 = H |α(t)〉

−ih̄ d

dt
〈α(t)| = 〈α(t)|H,

we end up with the equation of motion

ih̄
d

dt
ρ(t) = [H, ρ(t)].

It is easy to show that

d 〈A〉
dt

=

〈
∂A

∂t

〉

+
1

ih̄
〈[A,H ]〉 .

In a stationary ensemble the expectation values are
independent on time, so ρ̇ = 0 or

[H, ρ] = 0.

This is possible e.g. when ρ = ρ(H).

Entropy

The entropy is defined by

S = −kBTr ρ ln ρ.

In a base where ρ is diagonal,

S = −kB
∑

α

pα ln pα.

Entropy has the properties

1. S ≥ 0, because 0 ≤ pα ≤ 1.

2. S = 0 corresponds to a pure state, i.e. ∃α : pα = 1
and pα′ = 0 ∀α′ 6= α.

3. If the dimension N of the Hilbert space H is finite,
the entropy has a maximum when

ρ =
1

N I

or pα = 1

N ∀ |α〉 ∈ H. Then

S = kB lnN .

Thus, in this case the entropy fully corresponds to
classical Boltzmann entropy S = kB lnW .

4. The entropy is additive. If we have 2 (independent)
systems, the total Hilbert space is

H1+2 = H1 ⊗H2

and correspondingly

ρ1+2 = ρ1 ⊗ ρ2.

If ρi
∣
∣α(i)

〉
= p

(i)
α

∣
∣α(i)

〉
, then

ρ1+2

∣
∣
∣α(1), β(2)

〉

= p(1)
α p

(2)
β

∣
∣
∣α(1), β(2)

〉

.

Now

Tr 1+2A =
∑

α,β

〈α(1), β(2)|A|α(1), β(2)〉,

so that

S1+2 = −kBTr 1+2ρ1+2 ln ρ1+2

= −kB
∑

α,β

p(1)
α p

(2)
β (ln p(1)

α + ln p
(2)
β )

= −kB
∑

α

p(1)
α ln p(1)

α − kB
∑

β

p
(2)
β ln p

(2)
β

= S1 + S2.

The properties of the statistical entropy above are
equivalent to the thermodynamic entropy. This will be
shown later.

5.3. Density of states
Let us denote

H |n〉 = En |n〉 ,
so that

H =
∑

n

En |n〉 〈n| .

If the volume V of the system is finite the spectrum is
discrete and the states can be conveniently normalized
like

〈n|m〉 = δn,m.

Thermodynamic limit:

V → ∞ and N → ∞
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so that N/V remains constant.
The cumulant function of states is defined as

J(E) =
∑

n

θ(E − En),

i.e. the value of J at the point E is the number of those
states whose energy is less than E. The density of states
(function) can be defined as

ω(E) =
dJ(E)

dE
=
∑

n

δ(E − En),

since dθ(x)/dx = δ(x). However, in macroscopic systems
the energy levels are extremely closely spaced, and a more
sensible definition for the density of states is

ω(E) = lim
∆E→0

J(E + ∆E) − J(E)

∆E

i.e. the number of states in the interval (E,E + ∆E),
where we assume that we do not allow ∆E to become
smaller than the interval between energy levels. Density
of states becomes a smooth function when the intervals
between energy levels → 0 (volume → ∞), as does J(E).
We can also write, using the Hamilton operator,

J(E) = Tr θ(E −H)

ω(E) = Tr δ(H − E).

ω(E) corresponds to the volume ΓE of the energy surface
of the classical phase space.
Example: 1. Free particle
Let us consider a free particle in a box of size V = L3

with periodic boundary conditions. The Hamiltonian is

H =
p2

2m
.

The eigenfunctions are the plane waves

ψk(r) =
1√
V
eik·r,

where the wave vector k = p/h̄ can acquire the values
(periodicity)

k =
2π

L
(nx, ny, nz), ni ∈ Z, V = L3.

The corresponding energy levels are

ǫk =
h̄2k2

2m
=

p2

2m
.

In the limit of large volume the summation can be
transformed to the integration over the wave vector, using

∫

dk =
∑

∆k =
2π

L

∑

n

.

Thus,

∑

k

=

∫

dNk =
V

(2π)3

∫

d3k =
V

h3

∫

d3p.

If the particle has spin S, it has g = 2S + 1 spin degrees
of freedom. Then

J1(E) = g

∫

dNkθ

(

E − p2

2m

)

= g
V

h3
4π

∫ p

0

dp′p2

= g
V

h3

4π

3
p3.

So we get

J1(E) =
2

3
C1V E

3/2

ω1(E) = C1V E
1/2

C1 = 2πg

(
2m

h2

)3/2

.

Example: 2. Maxwell-Boltzmann gas
Let us consider N free particles. The total energy is

E =
∑

j

p2
j

2m

and the cumulant function

JN (E)

=

∫

dNk1
· · ·
∫

dNkN
θ

(

E − p2
1

2m
− · · · − p2

N

2m

)

=

∫

dE1 · · ·
∫

dENω1(E1) · · ·ω1(EN )

×θ(E − E1 − · · · −EN ).

Thus the corresponding density of states is

ωN (E) =
dJN (E)

dE

=

∫

dE1 · · · dENω1(E1) · · ·ω1(EN )

×δ(E − E1 − · · · −EN ).

We define the Laplace transforms

Ω1(s) =

∫ ∞

0

dE e−sEω1(E)

ΩN (s) =

∫ ∞

0

dE e−sEωN (E).

Now

ΩN (s)

=

∫ ∞

0

dE1 · · · dENω1(E1) · · ·ω1(EN )

×
∫ ∞

0

dE e−sEδ(E − E1 − · · · −EN )

=

∫ ∞

0

dE1 · · · dENω1(E1)e
−sE1 · · ·ω1(EN )e−sEN

= [Ω1(s)]
N .

Since

Ω1(s) =

∫ ∞

0

dE e−sEC1V E
1/2 = C1V Γ(

3

2
) s−3/2

= C1V
1

2

√
πs−3/2
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we have

ΩN (s) = (C2V )Ns−3N/2,

where

C2 =
1

2

√
πC1 = g

(
2πm

h2

)3/2

.

Performing the inverse Laplace transforms we get

ωN (E) =
1

Γ(3
2N)

(C2V )NE3/2N−1.

Note: We ignored the permutation symmetry! Thus, for
each N -particle states there are N ! permutations which
are physically equivalent (unless the particles are all
different). We can correct the density of states by
dividing this by N !, which gives us so-called Boltzmann
counting. Using this we obtain the classical ideal gas or
Maxwell-Boltzmann gas theory (will be discussed later):

ωN(E) =
1

N !Γ(3
2N)

(C2V )NE3/2N−1.

Note: This does not take into account the quantum
mechanical features of multiple occupation of 1-particle
states (bosons, fermions).

Sidebar: inverse Laplace transform

Obviously, if f(t) = tα, then Laplace transform is

∫ ∞

0

dt e−tstα = s−α−1

∫ ∞

0

dye−yyα = s−α−1Γ(α+ 1)

Thus, if α = 3N/2 − 1, we obtain the result for ωN .
Many standard function (inverse) Laplace
transformations can be found tabulated (Arfken).
More generally, inverse Laplace transforms can be
calculated using complex plane integral (see Arfken, for
example):

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
dsestf̂(s)

where γ ∈ R is chosen so that the Laplace transform

f̂(s) =

∫ ∞

0

dte−stf(t)

exists when s ≥ γ. It is easy to see that this is inverse
Laplace:

1

2πi

∫ γ+i∞

γ−i∞
dsest

∫ ∞

0

dt′e−st
′

f(t′)

=

∫ ∞

0

dt′f(t′)
1

2πi

∫ γ+i∞

γ−i∞
dses(t−t

′)

=

∫ ∞

0

dt′f(t′)eγ(t−t′) 1

2π

∫ ∞

−∞
dyeiy(t−t

′) = f(t)

The integral can be closed to the left on complex s-plane,
and calculated by finding residues within the contour.

γ

s

residues

5.4. Energy, entropy and temperature
The density of states operator ρ enables us to calculate
all thermodynamical properties of the system: for
example the moments 〈En〉 and entropy S. We can also
define temperature T from properties of ρ. For this we
need to define microcanonical ensemble, in analogy with
the classical mechanics way done earlier:

Microcanonical ensemble

We require that
a) energy is restricted between (E,E + ∆E), and
b) the entropy is maximized.
According to 5.2. this is satisfied when all states are
equally likely, thus, the density of states operator is

ρE =
1

ZE
θ(E + ∆E −H)θ(H − E),

where

ZE = Tr θ(E + ∆E −H)θ(H − E)

= Tr [θ(E + ∆E −H) − θ(E −H)]

= J(E + ∆E) − J(E)

is microcanonical partition function or the number of
states between (E,E + ∆E). When ∆E is small, we have

ZE ≈ ω(E)∆E.

Entropy is

SE = −kBTr ρ lnρ = kB lnZE .

Since ZE is a positive integer, SE ≥ 0 holds. Furthermore
we get

SE = kB ln[ω(E)∆E]

= kB lnω(E) + S0,

8



and we can write

SE = kB lnω(E),

because ln ∆E is non-extensive and negligible when V
large. (This expression is slightly incorrect dimensionally;
we should use ln(Cω(E)), where C has dimensions of
energy.)
Note: As a matter of fact

ω = ω(E, V,N).

Temperature

According to thermodynamics we have

1

T
=

(
∂S

∂E

)

V,N

.

In the microcanonical ensemble we define the
temperature T so that

1

T
= kB

∂

∂E
lnω(E, V,N).

Denoting

β =
1

kBT
,

we have

β =
∂ lnω

∂E
.

Example: Maxwell-Boltzmann gas
Now

ωN ∝ E3/2N−1,

so

lnωN =
3

2
N lnE + · · ·

and

β =
3N

2E

or we end up with the equation of state for 1-atomic ideal
gas:

E =
3

2
kBTN.

The thermodynamics of a quantum mechanical system
can be derived from the density of states ω(E, V,N). In
practice the density of states of a microcanonical
ensemble (E and N constant) is difficult to calculate, due
to the constraint in total E.

6. Equilibrium distributions
Microcanonical ensemble was discussed in the previous
section. That is obtained by maximising entropy with the
boundary condition H = E =constant, N constant. Now
we shall discuss canonical and grand canonical ensembles,
which are obtained by maximizing entropy with boundary
conditions 〈H〉 = E, N const. for canonical ensemble (i.e.
energy is allowed to fluctuate) and and 〈H〉 = E,
〈N̂〉 = N for grand canonical ensemble (i.e. both energy
and particle number are allowed to fluctuate).

6.1. Canonical ensemble
Let us now maximise the entropy under the constraints

〈H〉 = Tr ρH = E = constant

〈I〉 = Tr ρ = 1.

Using Lagrange multipliers, we require that

δ(S − λ 〈H〉 − λ′ 〈I〉) = 0,

where λ are λ′ are multipliers. We get

δTr (−kBρ lnρ− λρH − λ′ρ) =

Tr (−kB ln ρ− kBI − λH − λ′I)δρ = 0.

Since δρ is an arbitrary variation, we can solve for ρ and
end up (after relabelling the constants) with the canonical
or Gibbs distribution

ρ =
1

Z
e−βH ,

where Z is the canonical sum over states (or partition
function, which is determined from the condition Tr ρ = 1:

Z = Tr e−βH =
∑

n

e−βEn =

∫

dE ω(E)e−βE .

The constant β is yet undetermined! We shall show below
that β = 1/kBT .
Note: In the canonical ensemble the number of particles
is constant, i.e.

Z = Z(β, V,N, . . .).

The probability for the state ψ is

pψ = Tr ρPψ =
1

Z
〈ψ|e−βH |ψ〉.

Partcularly, in the case of an eigenstate of the
Hamiltonian,

H |n〉 = En |n〉 ,
we have

pn =
1

Z
e−βEn .

For one particle system we get Boltzmann distribution

pν =
1

Z
e−βǫν ; Z =

∑

ν

e−βǫν .
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Here ǫν is the one particle energy.

Entropy and temperature

Because in the canonical ensemble we have

ln ρ = −βH − lnZ,

the entropy will be

S = −kBTr ρ ln ρ = −kB 〈ln ρ〉
= kBβE + kB lnZ.

Here E is the expectation value of the energy

E = 〈H〉 =
1

Z
TrHe−βH .

Let us now calculate ∂S/∂E. Note that the parameter β
very well can depend on E! Thus, using the
thermodynamical identity we can define T :

1

T
=

(
∂S

∂E

)

V,N

= kBβ + kBEβ
′ + kB

∂ lnZ

∂E

= kB(β + Eβ′ − β′TrHe−βH/Z)

= kB(β + Eβ′ − β′〈H〉) = kBβ

where β′ = ∂β/∂E. Thus, we obtain the familiar relation

β =
1

kBT
.

Free energy

The partition function is the central quantity, and all
thermodynamic properties can be derived from it:

∂Z

∂β
= −Tr e−βHH = −Z 〈H〉 = −ZE

or

E = − ∂

∂β
lnZ = kBT

2 ∂ lnZ

∂T
.

Using the expression above we can write

S = kB
∂

∂T
(T lnZ) .

Using the definition for the Helmholtz free energy
F = E − TS, we get

F = −kBT lnZ.

With the help of this the density operator takes the form

ρ = eβ(F−H).

Note that F is a number, H operator.

Fluctuations

The probability distribution of the energy E is

P (E) = 〈δ(H − E)〉 = Tr ρδ(H − E).

This is normalized
∫
dEP (E) = 1, and we get the correct

expectation values 〈Hn〉 =
∫
dEEnP (E). Using canonical

density ρ, we obtain

P (E) =
1

Z
ω(E)e−βE .

When the volume is large, this typcially has a
well-defined maximum at E = Ē ≡ 〈H〉.

D E
w ( E ) e - b E

E_
E

Let us write the sum over states as

Z =

∫

dE ω(E)e−βE =

∫

dE e−βE+lnω(E).

Now we can use the saddle-point method to calculate the
sharply peaked integral: expand the exponent to second
order

lnω(E) − βE =

lnω(Ē) − βĒ

+

=0, maximum
︷ ︸︸ ︷
(
∂ lnω

∂E

∣
∣
∣
∣
E=Ē

− β

)

(E − Ē)

+
1

2

∂2 lnω

∂E2

∣
∣
∣
∣
E=Ē

(E − Ē)2 + · · · .

Linear term must vanish at E = Ē:

β =
∂ lnω

∂E

∣
∣
∣
∣
E=Ē

=
1

kB

∂S(E)

∂E

∣
∣
∣
∣
E=Ē

=
1

kBT (Ē)

where we used the microcanonical entropy
S(E) = kB lnω(E) to obtain the microcanonical T (Ē).
Thus, the temperature of the heat bath in canonical
ensemble = T = T (Ē), the temperature of the
microcanonical ensemble at energy Ē = 〈H〉can.. Actually,

ρβ,can. =

∫

dE P (E, β) ρE,microcan.

and canonical ensemble can be thought as an ensemble of
microcanonical ensembles. The 2nd order term in the
Taylor series is

∂2S

∂E2 =
∂

∂E

(
1

T

)

= − 1

T 2

∂T

∂E
= − 1

T 2CV
,

so

Z ≈ ω(Ē)e−βĒ
∫

dE e
− 1

2kB T2CV
(E−Ē)2

︸ ︷︷ ︸

normal distribution

.

Thus, we find the variance of the normal distribution:

(∆E)2 = kBT
2CV

or
∆E =

√

kBT 2CV = O(
√
N),
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because CV , as well as E, is extensive (O(N)). Thus the
fluctuation of the energy is

∆E

E
∝ 1√

N
.

Note: More straightforward way to calculate the width is
to use

(∆E)2 =
〈

(H − 〈H〉)2
〉

= 〈H2〉 − 〈H〉2,

which is, using F = −kBT ln Tr e−βH ,

(∆E)2 = − ∂2

∂β2
(βF )

= −kBT 2 ∂

∂T
T 2 ∂

∂T

F

T

= −kBT 3

(
∂2F

∂T 2

)

V,N

= kBT
2CV

Note: Alternative (and perhaps more rigorous) way to
derive the density operator for canonical ensemble would
be to start from a very large microcanonical system, and
divide this into 2 pieces: part I, “system” and II, “heat
bath”, where volume of II ≫ volume of I. Using only
microcanonical total density operator, it is
straightforward to derive the canonical density for I:

ρI ∝ e−βIIHI

where βII = 1/kBTII .

6.2. Grand canonical ensemble
Let us consider a system where both the energy and the
number of particles are allowed to fluctuate. The Hilbert
space of the system is then the Fock space, direct sum

H = H(0) ⊕H(1) ⊕ · · · ⊕ H(N) ⊕ · · ·
and the Hamiltonian operator the sum of 1,2,. . . -particle
Hamiltonians:

H = H(0) +H(1) + · · · +H(N) + · · · .
We define the (particle) number operator N̂ so that

N̂ |N〉 = N |N〉
for eigenstates of N̂ .
Grand canonical ensemble can derived by allowing both
E and N to fluctuate, and requiring that the expectation
values are fixed:

〈H〉 = Ē = given energy
〈

N̂
〉

= N̄ = given particle number

Tr ρ = 〈I〉 = 1 probability normalization

We can now demand that the entropy S = −kBρ ln ρ is
maximized with the above constraints. Thus, using
Lagrange multipliers we obtain

0 = δ(S + λ 〈H〉 + λ′
〈

N̂
〉

+ λ′′ 〈I〉)

= δTr (kBρ ln ρ− λρH − λ′ρN̂ − λ′′ρ)

= Tr δρ(kB ln ρ+ kB − λH − λ′N̂ − λ′′)

ending up with the grand canonical distribution

ρ =
1

ZG
e−β(H−µN̂)

(again relabeling constants). Here

ZG = Tr e−β(H−µN̂)

is the grand canonical partition function.
The trace can be split in N -sectors (effectively using
eigenstates of N̂):

ZG =
∑

N

TrNe
−β(H−µN̂) =

∑

N

eβµNTrNe
−βH(N)

=
∑

N

zNZN ,

where ZN is the canonical partition function with N

particles, and fugasity z ≡ eβµ , and H(N) is a N -particle
Hamiltonian.
This directly gives the probability distribution of particle
number:

P (N) ≡ 〈δ(N − N̂)〉 = Tr ρN̂ =
1

ZG
zNZN

i.e. the grand canonical ensemble is equivalent to the sum
of N -particle canonical ensembles where the weight of
each N sector is given by zN .
In the base where the Hamiltonian is diagonal the
partition function is

ZG =
∑

N

∑

n

e−β(E(N)
n −µN),

where

H |N ;n〉 = H(N) |N ;n〉 = E(N)
n |N ;n〉 ,

when |N ;n〉 ∈ H(N) is a state of N particles, i.e.

N̂ |N ;n〉 = N |N ;n〉 .

Particle number and energy

Now

∂ lnZG

∂µ
=

1

ZG
Tr e−β(H−µN̂)βN̂

= β
〈

N̂
〉

= βN̄

and

∂ lnZG

∂β
= − 1

ZG
Tr e−β(H−µN̂)(H − µN̂)

= −〈H〉 + µ
〈

N̂
〉

= −Ē + µN̄,

so that, using β = 1/(kBT ),

N̄ = kBT
∂ lnZG

∂µ

Ē = kBT
2 ∂ lnZG

∂T
+ kBTµ

∂ lnZG

∂µ
.
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(this is assuming that β = 1/(kBT ), which we have not
really yet shown!)

Entropy and Grand potential

According to the definition of entropy we have

S = −kBTr ρ ln ρ = −kB 〈ln ρ〉 .

Now
ln ρ = −βH + βµN̂ − lnZG,

so that
1

kBβ
S = Ē − µ N̄ +

1

β
lnZG.

In thermodynamics we defined the grand potential

Ω = E − TS − µN,

which agrees with the above expression if we identify
β = 1/(kBT ) (as expected) and

Ω = −kB T lnZG.

Thus, the density operator can be written as

ρ = eβ(Ω−H+µN̂).

Note: The grand canonical partition function depends on
variables T , V and µ, i.e.

ZG = ZG(T, V, µ).

Fluctuations

Now

∂2

∂µ2 Tr e−β(H−µN̂) = Tr e−β(H−µN̂)β2N̂2

= ZGβ
2
〈

N̂2
〉

,

so

(∆N)2 =
〈

(N̂ − N̄)2
〉

=
〈

N̂2
〉

− N̄2

= (kBT )2
∂2 lnZG

∂µ2 = kBT
∂N̄

∂µ
= O(N̄ ),

because only N̄ is extensive in the last expression. Thus
the particle number fluctuates like

∆N

N̄
= O

(
1√
N̄

)

.

A corresponding expression is valid also for the
fluctuations of the energy. For a mole of matter the
fluctuations are ∝ 10−12 or the accuracy ≈ the accuracy
of the microcanonical ensemble.

6.3. Relation with thermodynamics
In thermodynamics the entropy is a state variable related
to the exchange of the heat energy (dQ = TdS) between
the system and the environment. However, the statistical
Gibbs entropy −kBρ ln ρ is constructed in a very different

manner. Let us now study the relation closer. We shall
assume that the Hamiltonian H and eigenstates |α〉
depend on external parameters {xi}:

H(xi) |α(xi)〉 = Eα(xi) |α(xi)〉 .

Now the change in energy of |α〉:

∂Eα
∂xi

=
∂

∂xi
〈α|H |α〉 =

〈

α

∣
∣
∣
∣

∂H

∂xi

∣
∣
∣
∣
α

〉

+ Eα
∂

∂xi
〈α| α〉

=

〈

α

∣
∣
∣
∣

∂H

∂xi

∣
∣
∣
∣
α

〉

,

because 〈α| α〉 = 1 (Feynman-Hellman theorem).

Adiabatic variation

In quantum mechanics it can be shown that, if the
variation of the parameters x(t) is slow enough and the
initial state of the system is |α〉, the system will remain in
the eigenstate |α(x(t))〉 and there are no transitions to
other Hamiltonian eigenstates (note that this is only true
for eigenstates of H).

E a ( x i )

x i

a = 0a = 1

This implies that the probabilities for the states remain
constant and the change in the entropy

S = −kB
∑

α

pα ln pα

is zero.
Let us consider the density operator in an equilibrium
state ([H, ρ] = 0). We assume N is constant. In the base
{|α〉}, where the Hamiltonian is diagonal,

H |α〉 = Eα |α〉 ,

we have

ρ =
∑

α

pαPα, Pα = |α〉 〈α| .

We divide the variation of the density operator into two
parts:

δρ =

adiabatic
︷ ︸︸ ︷
∑

α

pαδPα+

nonadiabatic
︷ ︸︸ ︷
∑

α

δpαPα

= δρ(1) + δρ(2).

The first part corresponds to adiabatic variation (in
statistical sense), because the probabilities of the
eigenstates remain fixed.
Let us define Fi, the generalized force conjugate to the
generalized displacement xi as

Fi = −Tr ρ
∂H

∂xi
= −

〈
∂H

∂xi

〉

.
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For example, F = p, x = V , and Fδx the work done by
the system.
Then the change in energy is

δ 〈H〉 = Tr δρH + Tr ρ δH

= Tr δρ(1)H + Tr δρ(2)H +
∑

i

δxiTr ρ
∂H

∂xi

=
∑

α

pαTrH δPα + Tr δρ(2)H −
∑

i

Fiδxi.

The first term vanishes, because

TrH δPα =
∑

β

〈β|H (|α〉 〈δα| + |δα〉 〈α|) |β〉

= Eαδ 〈α| α〉 = 0,

so that the change in energy becomes

δ 〈H〉 = Tr δρ(2)H −
∑

i

Fiδxi =
∑

α

δpαEα −
∑

i

Fiδxi.

The definition of the statistical Gibbs entropy is

Sstat = −kbTr ρ ln ρ = −kB
∑

α

pα ln pα ,

and its variation is

δSstat = −kB
∑

α

δpα ln pα − kB

=0
︷ ︸︸ ︷
∑

α

δpα

= −kB
∑

α

δpα ln pα

= kBβ
∑

α

δpαEα,

where in the last stage we used the canonical ensemble

pα =
1

Z
e−βEα

Thus, if we denote β = 1/(kBT
stat), we obtain

δ 〈H〉 = T statδSstat −
∑

i

Fiδxi.

This is equivalent to the first law of the thermodynamics,

δU = T thermδStherm − δW,

provided we identify

〈H〉 = Ē = U = internal energy

T stat = T therm

Sstat = Stherm

∑

i

Fiδxi = δW = work.

Isolated system and microcanonical ensemble

If the system is microcanonical, then Eα = E for all
states. However, when we change x, E(x) can vary! In
this case

δ 〈H〉 = δE =
∑

α

δpαEα −
∑

i

Fiδxi

= −
∑

i

Fiδxi ,

which is equivalent to thermodynamical work done by an
isolated system

δU = −δW = −
∑

i

Fiδxi

6.4. Einstein’s theory of fluctuations
Let us divide a large system into macroscopic parts with
weak mutual interactions.
⇒ ∃ operators {X̂i}, which correspond to the extensive
properties of the partial systems so that

[X̂i, X̂j ] ≈ 0

[X̂i, H ] ≈ 0.

⇒ ∃ mutual eigenstates |E,X1, . . . , Xn〉, which are
macrostates of the system, i.e. for each set of the
parameters (E,X1, . . . , Xn) there is a macroscopic
number of microstates. Let Γ(E,X1, . . . , Xn) be the
number of the microstates corresponding to the state
|E,X1, . . . , Xn〉 (the volume of the phase space).
The total number of the states is

Γ(E) =
∑

{Xi}
Γ(E,X1, . . . , Xn)

and the relative probability of the state (E, {X})

f(E,X1, . . . , Xn) =
Γ(E,X1, . . . , Xn)

Γ(E)
.

The entropy of the state |E,X1, . . . , Xn〉 is

S(E,X1, . . . , Xn) = kB ln Γ(E,X1, . . . , Xn)

or

f(E,X1, . . . , Xn) =
1

Γ(E)
e

1
kB

S(E,X1,...,Xn)
.

This is the probability of state X with fixed energy E.
In thermodynamic equilibrium the entropy S is
maximized:

S0 = S(E,X
(0)
1 , . . . , X(0)

n ).

Let us denote by

xi = Xi −X
(0)
i

deviations from the equilibrium positions, and expand the
entropy to 2nd order around extremum: the Taylor series
of the entropy will be

S = S0 − 1

2
kB
∑

i,j

gijxixj + · · · ,
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where

gij = − 1

kB

(
∂2S

∂Xi∂Xj

)∣
∣
∣
∣
{X(0)

i
}
.

We use vector-matrix notation

x =






x1

...
xn




 and g = (gij).

Then the probability becomes

f(x) = Ce−
1
2 x

T gx,

where
C = (2π)−n/2

√

detg.

Correlation functions

Correlation functions can be written as

〈xp · · ·xr〉 ≡
∫

Dx f(x)xp · · ·xr

=

[
∂

∂hp
· · · ∂

∂hr
F (h)

]

h=0

,

where
Dx = dx1 · · ·dxn

and the generating function is

F (h) = C

∫

Dxe− 1
2x

T gx+ 1
2 (hT x+xTh) = e

1
2h

T g−1h.

SVN-system

When studying the stability conditions of matter we
found out that the

∆S = − 1

2T

∑

i

(∆Ti∆Si − ∆pi∆Vi + ∆µi∆Ni).

Let us consider now only one volume element:

f = Ce
− 1

2kB T
(∆T ∆S−∆p∆V+∆µ∆N)

.

We assume that the system is not allowed to exchange
particles, i.e. ∆N = 0. Taking now T and V as our
independent variables we can employ the definitions of
the heat capacity and compressibility:

f(∆T,∆V ) ∝ e
− 1

2

[
CV

kBT2 (∆T )2+ 1
V kBT κT

(∆V )

]

.

We can now read out the matrix g:

g =

(
T V

T CV

kBT 2 0

V 0 1
V kBTκT

)

.

The variances are then

〈
(∆T )2

〉
=

kBT
2

CV
〈
(∆V )2

〉
= V kBTκT .

We can naturally also calculate correlations of other
quantities, for example

〈∆S∆V 〉 =

(
∂S

∂T

)

V

〈∆T∆V 〉 +

(
∂S

∂V

)

T

〈(∆V )2〉

=

(
∂p

∂T

)

V

V kBTκT

= −
[(

∂V

∂p

)

T

(
∂T

∂V

)

p

]−1

V kBTκT

= kB V Tαp

where we used the Maxwell relation
(
∂S
∂V

)

T
=
(
∂p
∂T

)

V
.

Note that if we were to origially take other set of
variables, say, S, V as the independent ones, the matrix
g = −1/kB∂

2S/∂~x2 would look different (in this case
non-diagonal).

6.5. Reversible minimum work
Another way to calculate the fluctuation probability is to
consider the concept of reversible minimum work.
Let x = X −X(0) be the fluctuation of the variable X .
For one variable we have

f(x) ∝ e−
1
2 gx

2

.

Let us assume that X is generalized displacement; thus

dU = T dS − F dX −d̄Wother.

If we write S = S(U,X, . . .) we get the partial derivative

∂S

∂X
=
F

T
.

On the other hand we had

S = S0 − 1

2
kB
∑

i,j

gijxixj

= S0 − 1

2
kBgx

2,

so
∂S

∂X
= −kBgx

and in the limit of small displacement

F = −kBTgx.
When there is no action on X from outside, the deviation
x fluctuates spontaneously. Let us give rise to the same
deviation x by applying reversible adiabatic external
work:

dU = −F dX = kBT g x dx.

Integrating this we get

(∆U)rev ≡ ∆R =
1

2
kBTgx

2,

where ∆R is the minimum reversible work required for
the fluctuation x = ∆X . We can write

f(∆X) ∝ e
− ∆R

kB T .

Note that this relates a fluctuation of X at constant
U = E (f(x) ∼ eδ

2S/kB ) to the adiabatic work done to
achieve same change of X (δS = 0).
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7. Ideal equilibrium systems
In ideal systems there are no interactions between the
particles/degrees of freedom. If we know the solution for
1-particle state, N-particle state can be solved by taking
into account the correct statistics.

7.1. System of free spins
Let us consider N particles with spin 1

2 . The
z-component of the spins are

Siz = ± 1
2 h̄ i = 1, . . . , N.

The z component of the total spin is

Sz =
∑

i

Siz =
1

2
h̄(N+ −N−),

where

N+ = +
1

2
h̄ spin count

N− = −1

2
h̄ spin count.

Sz determines the macrostate of the system.
Denoting Sz = h̄ν we have

N+ =
1

2
N + ν

N− =
1

2
N − ν

and

ν = −1

2
N,−1

2
N + 1, . . . ,

1

2
N.

Let W (ν) the number of those microstates for which
Sz = h̄ν, i.e. W (ν) tells us, how many ways there are to
distribute N particles into groups of N+ and N−

particles so that N+ +N− = N and N+ −N− = 2ν.
From combinatorics we know that this is given by the
binomial distribution:

W (ν) =

(
N
N+

)

=
N !

N+!N−!

=
N !

(1
2 N + ν)!(1

2 N − ν)!
.

W (ν) is the degeneracy (=number of states) of the
macrostate Sz = h̄ν.
The Boltzmann entropy is

S = kB lnW (ν).

Using Stirling’s formula

lnN ! ≈ N lnN −N

we get

lnW (ν) ≈ N lnN −N

−
[

(
1

2
N + ν) ln(

1

2
N + ν) − (

1

2
N + ν)

]

−
[

(
1

2
N − ν) ln(

1

2
N − ν) − (

1

2
N − ν)

]

=
1

2
N ln

N2

1
4 N

2 − ν2
− ν ln

1
2 N + ν
1
2 N − ν

= N ln 2 +
1

2
N ln

1

1 − 4ν2/N2
− ν ln

1 + 2ν/N

1 − 2ν/N

≈ N ln 2 − 2
ν2

N

where in the last step we have taken the approximation
|ν| ≪ N . The maximum of W is clearly at ν = 0.
Thus, the binomial distribution can be approximated by a
normal distribution:

W (ν) ≈W (0)e−2ν2/N , W (0) ≈ 2N .

The mean deviation ∆ν ≈
√
N/2 ≪ N , i.e. large values

of ν are very unlikely.
Note that the total number of states

Wtot =
∑

ν

W (ν) = 2N

Thus, a correct normalization of the gaussian distribution
would be

Wtot = C

∫

dνe−2ν2/N = C
√

Nπ/2 = 2N

which implies C = 2N/
√

Nπ/2. However, the correction
in this case is non-extensive and can be neglected in the
large N limit:

lnC =

extensive
︷ ︸︸ ︷

N ln 2 −

non-extensive
︷ ︸︸ ︷

1

2
ln(Nπ/2)

Energy

Let us put the system in an external magnetic field
H = Hẑ, with magnetic flux density

B = µ0H.

The potential energy is

E = −µ0

∑

i

µi · H = −µ0H
∑

i

µiz ,

where µi is the magnetic moment of the particle i.
The magnetic moment of a particle is proportional to its
spin:

µ = γS,

where γ is the gyromagnetic ratio. In classical
electrodynamics, with a homogeneously charged solid
body of mass m, total charge q and angular momentum S

, this has the value

γ0 =
q

2m
.

However, for elementary particles this is different, and for
electrons we have

γ ≈ 2γ0 = − e

m
,
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Usually this is given in terms of Bohr magneton

µB =
eh̄

2m
= 5.79 · 10−5 eV

T
.

The energy of the system is

E = −µ0H
∑

µiz = −µ0γHSz = ǫν,

where
ǫ = −h̄γµ0H

is the energy/particle. For electrons we have

ǫ = 2µ0µBH.

Now the change in energy is

∆E = ǫ∆ν,

Changing the variable ν ↔ E, and using the condition
(Jacobi!)

ω(E) |∆E| = W (ν) |∆ν|
we get as the density of states

ω(E) =
1

|ǫ| W
(
E

ǫ

)

.

1) Microcanonical ensemble

Let us first consider the spin system at fixed energy.
Denoting

E0 =
1

2
ǫN,

the total energy will lie between −E0 ≤ E ≤ E0.
With the help of the energy W can be written as

lnW (ν) =
1

2
N ln

4E2
0

E2
0 − E2

− E

ǫ
ln
E0 + E

E0 − E

= lnω(E) + ln |ǫ|.

As the entropy we get

S(E) = kB lnω(E)

= NkB

[
1

2
ln

4E2
0

E2
0 − E2

− E

2E0
ln
E0 + E

E0 − E

]

+non extensive term.

The temperature was defined like

1

T
=
∂S

∂E
,

so

β(E) =
1

kBT (E)
= − N

2E0
ln
E0 + E

E0 − E
.

We can solve for the energy:

E = −E0 tanh
βE0

N

= −1

2
Nµ0h̄γH tanh

(
µ0h̄γH

2kBT

)

.

The magnetization or the magnetic polarization is the
magnetic moment per the volume element, i.e.

M =
1

V

∑

i

µi.

The z component of the magnetization is

Mz = − 1

V

ǫν

µ0H
=

1

V

h̄γµ0Hν

µ0H

=
1

V
γh̄ν.

Now

E = −µ0HVMz,

so we get for our system as the equation of state

M =
1

2
ρh̄γ tanh

(
µ0h̄γH

2kBT

)

,

where ρ = N/V is the particle density. Note: The
relations derived above

E = E(T,H,N)

M = M(T,H,N)

determine the thermodynamics of the system.

2) Canonical ensemble

The canonical partition function is

Z =
∑

n

e−βEn .

Here

En = −µ0H

N∑

i=1

µiz

the energy of a single microstate.
Denote

µiz = h̄γνi, νi = ±1

2
.

Now

Z =
∑

all microstates

eβµ0H
∑

i
µiz

=

1
2∑

ν1=− 1
2

· · ·
1
2∑

νN=− 1
2

eβµ0h̄γH
∑

i
νi

=





1
2∑

ν=− 1
2

eβµ0Hγh̄ν





N

= ZN1 ,

where Z1 the one particle state sum

Z1 = e−
1
2 βµ0h̄Hγ + e

1
2 βµ0h̄Hγ

= 2 cosh
µ0h̄Hγ

2kBT
.
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The same result can be obtained using W (ν):

Z =
∑

ν

W (ν)e−βE(ν)

=
∑

ν

W (ν)e−βǫν

=
∑

N+

(
N
N+

)

e−βǫ(N
+− 1

2 N)

= e−
1
2 βǫN

(
1 + e−βǫ

)N
.

From the partition function we can determine
thermodynamic potential, free energy. However, what is
the “correct” thermodynamic potential in this case?
Naively we might identify

F (T,H) = −kBT lnZ

as the Helmholtz free energy (as is done in many
textbooks). This is (mostly) OK for thermodynamics,
and the simple choice, but it is not fully consistent:
Note that H is generalized force (“p”), M is displacement
(“V ”). Thus, when our set of independent variables is (T ,
H), the right thermodynamic potential is the Gibbs free
energy

G = G(T,H) = −kBT lnZ

= −kBTN
[

ln 2 + ln cosh
µ0Hγh̄

2kBT

]

.

Furthermore, in this case we should identify our energy E
as the enthalpy of the system:

E = −µ0HVM = U −H × (µ0VM)

which is related to the true internal energy U by a
Legendre transform. In this case internal energy vanishes:

U = 0.

True internal energy U should not depend on external
force like H , only on internal properties like M . However,
in this case there is no H-independent energy!
Thus, the entropy is

S = −
(
∂G

∂T

)

H

= NkB

[

ln 2 + ln cosh
µ0Hγh̄

2kBT

−µ0h̄γH

2kBT
tanh

µ0h̄γH

2kBT

]

.

Differentiating the free energy with respect to the field H

we get

−
(
∂G

∂Hz

)

T

= kBT
1

Z

∂

∂H

∑

ν

W (ν)e−βǫν

= µ0γh̄
1

Z

∑

ν

νW (ν)e−βǫν

= µ0γh̄ 〈ν〉 = µ0VMz.

Thus the differential of the free energy is

dG = −S dT − µ0VM · dH,

so that the magnetization is

M = − 1

µ0V

(
∂G

∂H

)

T

= −1

2
ρh̄γ tanh

(
µ0h̄γH

2kBT

)

.

This is identical with the result we obtained in the
microcanonical ensemble.
The microcanonical entropy = the canonical entropy + a
non extensive term.

Energy

a) Energy E(T,H) (enthalpy) can be calculated directly
from partition function

E = 〈E(ν)〉 = ǫν̄ = − 1

Z

∂

∂β
Z

= −1

2
Nǫ tanh

(
1

2
βǫ

)

= the energy of the microcanonical enesmble.

b) Alternatively, using thermodynamic Legendre
transformation from enthalpy to Gibbs potential

G = E − TS

or

E = G+ TS = G− T
∂G

∂T

= G+ β
∂G

∂β
=

∂

∂β
(βF )

= − ∂

∂β
lnZ

Susceptibility

According to the definition the susceptibility is

χ =

(
∂M

∂H

)

T

= − 1

µ0V

(
∂2G

∂H2

)

=
µ0ρ

kBT

(
1
2 h̄γ

)2

cosh2
(
h̄γµ0H
2KBT

) .

When H → 0 we end up with Curie’s law

χ =
C

T
,

where

C =
µ0ρ

kBT

(
1

2
h̄γ

)2

.

Thermodynamic identifications

Earlier we identified

Estat ≡ E =
〈

Ĥ
〉

= enthalpy,
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so that

G = E − TS = Gtherm

= the Gibbs free energy

= U − TS − µ0VM · H.

Now using the differentials we get

dU = dG+ d(TS) + d(µ0VM · H)

= TdS + µ0VH · dM
= TdS −d̄W

Thus, the work done by a magnetic system is

d̄W = −µ0VH · dM.

(compare to pdV ).
Example: Adiabatic demagnetization is used to
achieve cooling of atomic spins to nanokelvin
temperatures. This is due to very large degeneracy of
spin states, which means large entropy down to very
small temperatures. Removing entropy with magnetic
fields can then reduce temperature very effectively.
Now

S

NkB
= ln 2 + ln coshx− x tanhx,

where

x =
µ0h̄Hγ

2kBT
.

When T → 0, then x→ ∞, so that

ln coshx = ln
1

2
ex(1 + e−2x)

= x− ln 2 + e−2x + · · ·

and

tanhx =
ex(1 − e−2x)

ex(1 + e−2x)

= 1 − 2e−2x + · · · .

Hence
S

NkB
→ 2xe−2x + · · · .

When T → ∞, then x→ 0, and

S

NkB
→ ln 2.

Let us cool down a system by some means at a large field
Ha, reaching point a:

H 1 H 2 H 3< <

b a

T

SN k B
l n  2

We decrease the field adiabatically within the interval
a→ b. Now S = S(H/T ), so that

Sa = S

(
Ha

Ta

)

= Sb = S

(
Hb

Tb

)

or
Tb
Ta

=
Hb

Ha
.

Can be serialised to reach even smaller T .

Negative temperature

The entropy of the spin system is

S(E) = NkB

[
1

2
ln

4E2
0

E2
0 − E2

− E

2E0
ln
E0 + E

E0 − E

]

,

where

E0 = µ0µBHN ja − |E0| < E < |E0|.

- | E 0 | + | E 0 |
T > 0 T < 0b > 0 b < 0

b = 0S ( E )

Now

β(E) =
1

kB

∂S

∂E
= − N

2E0
ln
E + E0

E − E0
.

- E 0 + E 0 + E 0 - E 0

e - b E
H - H

Originally the maximum of ω(E)e−βE/Z is at a negative
value E. Reversing the magnetic field abruptly E → −E
and correspondingly β → −β.
The temperature can be negative if the energy is bounded
both above and below.

7.2. Classical ideal gas
(Maxwell-Boltzmann gas)
Kinetic gas theory, James Clerk Maxwell (1860): gas of
atoms/molecules. Explained many properties of real
gases, supporting the atomic hypothesis of matter.
At standard temperature and pressure (STP) most gases
are dilute:

2 Å
r i

We define ri so that the volume occupied by one molecule
=

vi =
4

3
πr3i =

V

N
=

1

ρ

or

ri = 3

√
3

4πρ
.

Typically

• the diameter of an atom or a molecule d ≈ 2Å.

• the range of the interaction 2–4Å.
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• the mean free path (collision interval) l ≈ 600Å.

• at STP (T = 273K, p = 1atm) ri ≈ 20Å.

or
d ≪ ri ≪ l
2 20 600 Å

The most important effect of collisions is that the system
thermalizes i.e. attains an equilibrium, which corresponds
to a statistical ensemble. Otherwise we can forget the
collisions and describe the gas as non-interacting
molecules. Let us consider a system of one molecule
which can exchange energy (heat) with its surroundings.
Then the suitable ensemble is the canonical ensemble and
the distribution the Boltzmann distribution

pl = 〈l| ρ |l〉 =
1

Z
e−βǫl ,

where the canonical partition function is

Z =
∑

l

e−βǫl .

We recall that in k-space the density of 1-particle states
is constant: in volume V = L3 the wave function is

ψk(x) ∝ eik·x

where, using periodic b.c. k = 2πn/L, n ∈ Z3. Thus, in
volume element (k,k + ∆k) the number of states is
constant independent of k.
For convenience, we shall switch to velocity space, with
v = p/m = h̄/mk. However, everything would work also
in k-space too.
The volume element in velocity space is

d3v =
1

m3
d3p =

(
h̄

m

)3

d3k,

i.e. the density of states is also constant. The energy of
k-state is

ǫk = 〈k|H |k〉 =
h̄2k2

2m
=

1

2
mv2,

so that the velocity distribution becomes

f(v) ∝ 〈k| ρ |k〉 = e
− mv2

2kB T

or

f(v) = Ce
− mv2

2kB T .

C can be determined from the condition

1 =

∫

f(v) d3v = C

[∫ ∞

−∞
dvxe

− mv2
x

2kBT

]3

= C

(
2πkBT

m

)3/2

.

Thus the velocity obeys Maxwell’s distribution

f(v) =

(
m

2πkBT

)3/2

e
− mv2

2kB T .

From the relation
∫

d3v =

∫ ∞

0

4πv2dv

we can obtain for the speed (the absolute value of the
velocity v = |v|) the distribution function F (v)

F (v) = 4πv2f(v).

F ( v )

v

• The most likely speed (maximum of the distribution)

vm =

√

2kBT

m
.

• The average speed

〈v〉 =

∫ ∞

0

dv vF (v) =

√

8kBT

πm
.

• The average of the square of the speed

〈
v2
〉

=

∫ ∞

0

dv v2F (v) =
3kBT

m
.

Note:
〈

1

2
mv2

x

〉

=

〈
1

2
mv2

y

〉

=

〈
1

2
mv2

z

〉

=
1

2
kBT

and 〈
1

2
mv2

〉

= 3

〈
1

2
mv2

x

〉

=
3

2
kBT,

i.e. the energy is evenly distributed among the 3
(translational) degrees of freedom: the equipartition of the
energy.

Partition function and thermodynamics

The single particle partition function is

Z1(β) =

∫

dE ω(E)e−βE

= g
∑

k

e−β
h̄2k2

2m = g
V

h3

∫

d3p e
− p2

2mkB T

= g
V

h3
(2πmkBT )3/2.

Here g is the spin degeneracy.
When we denote the thermal de Broglie wave length by

λT =

√

h2

2πmkBT

we can write the 1 body partition function as

Z1(β) = g
V

λ3
T

.
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In the N particle system the canonical partition function
takes the form

ZN =
1

N !
gN
∑

k1

· · ·
∑

kN

e
−β(ǫk1

+···+ǫk1
)

=
1

N !
gN

(
∑

k

e−βǫk

)N

=
1

N !
ZN1 .

Here N ! takes care of the fact that each state

|k1, . . . ,kN 〉

is counted only once. Neither the multiple occupation nor
the Pauli exclusion principle has been taken into account.
Using Stirling’s formula lnN ! ≈ N lnN −N the free
energy can be written as

FN =

= −kBT lnZN

= NkBT

[

ln
N

V
− 1 − ln g + hλ3

T

]

= NkBT

[

ln
N

V
− 3

2
ln kBT − 1 − ln g +

3

2
ln

h2

2πm

]

.

Because dF = −S dT − p dV + µdN, the pressure will be

p = −
(
∂F

∂V

)

T,N

= NkBT
1

V

i.e. we end up with the ideal gas equation of state

pV = NkBT.

With the help of the entropy

S = −
(
∂F

∂T

)

V,N

= −F
T

+
3

2
NkB

the internal energy is

U = F + TS =
3

2
NkBT

i.e. the ideal gas internal energy.
The heat capacity is

CV =

(
∂U

∂T

)

V,N

=
3

2
NkB.

Comparing this with

CV =
1

2
fkBN

we see that the number of degrees of freedom is f = 3.
We can also calculate the Gibbs function
G = F + pV = µN , and substuting N/V = p/(kBT ) using

the the equation of state, we obtain µ in terms of the
natural variables for the Gibbs ensemble:

µ(p, T ) = T

(

ln p− 5

2
ln kBT +

3

2
ln

h2

2πm
− ln g

)

.

Grand canonical partition function

According to the definition we have

ZG =
∑

N

∑

n

e−β(E(N)
n −µN) =

∑

N

zNZN ,

where
z = eβµ

is called the fugacity and ZN is the partition function of
N particles. Thus we get

ZG =
∑

N

1

N !
zNZN1 = ezZ1 = exp

[

eβµ
gV

λ3
T

]

.

The grand potential is

Ω(T, V, µ) = −kBT lnZG = −kBTeβµ
gV

λ3
T

.

Because dΩ = −S dT − p dV − N̄ dµ, we get

p = −
(
∂Ω

∂V

)

T,µ

= −Ω

V
= kBTe

βµ g

λ3
T

and

N̄ = −∂Ω

∂µ
= eβµ

gV

λ3
T

=
pV

kBT
,

and we end up again with the ideal gas equation of state

pV = N̄kBT.

Here

N̄ = 〈N〉 =

∑

N Nz
NZN

∑

N z
NZN

=
1

ZG
z
∂ZG

∂z
=
∂ lnZG

∂ ln z
.

Another way
We distribute N particles among the 1 particle states so
that in the state l there are nl particles.

6
ǫl

t t nl = 2

t t t t nl = 4

t nl = 1
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Now
N =

∑

l

nl and E =
∑

l

ǫlnl.

The number of possible distributions is

W = W (n1, n2, . . . , nl, . . .) =
N !

n1!n2! · · ·nl! · · ·
.

Since in every distribution (n1, n2, . . .) each of the N !
permutatations of the particles gives an identical state
the partition function is

ZG =

∞∑

n1=0

∞∑

n2=0

· · · 1

N !
We−β(E−µN)

=

∞∑

n1=0

∞∑

n2=0

· · · 1

n1!n2! · · ·
e−β

∑

l
nl(ǫl−µ)

=
∏

l

[ ∞∑

nl=0

1

nl!
e−βnl(ǫl−µ)

]

=
∏

l

exp
[

e−β(ǫl−µ)
]

= exp

[
∑

l

e−β(ǫl−µ)

]

= exp
[
eβµZ1

]

or exactly as earlier.

Validity range of MB gas law

Now

∂ lnZG

∂ǫl
=

−β∑∞
n=0 n

1
n! e

−βn(ǫl−µ)

∏

m

[
∑∞

nm=0
1
nm! e

−βnm(ǫm−µ)
]

= −β 〈nl〉

so the occupation number n̄l of the state l is

n̄l = 〈nl〉 = − 1

β

∂ lnZG

∂ǫl
= − 1

β

∂

∂ǫl
e−β(ǫl−µ)

= e−β(ǫl−µ).

The Boltzmann distribution gives a wrong result (for real
gases) if 1-particle states are multiply occupied. Our
approximation is therefore valid if

n̄l ≪ 1 ∀l

or
eβµ ≪ eβǫl ∀l.

Now min ǫl = 0, so that

eβµ ≪ 1.

On the other hand

eβµ =
N̄

V
λ3
T , when g = 1

and
N̄

V
=

1

vi
=

3

4πr3i
,

so we must have
λT ≪ ri.

Now

λT =

√

h2

2πmkBT

is the minimum diameter of the wave packet of a particle
with the typical thermal energy (ǭl = kBT ) so in other
words:
The Maxwell-Boltzmann approximation is valid when the
wave packets of individual particles do not overlap.

7.3. Diatomic ideal gas

d

We classify molecules of two atoms to

• homopolar molecules (identical atoms), e.g. H2, N2,
O2, . . ., and

• heteropolar molecules (different atoms), e.g. CO,
NO, HCl, . . .

When the density of the gas is low the intermolecular
interactions are minimal and the ideal gas equation of
state holds. The internal degrees of freedom, however,
change the thermal properties (like CV ). When we
assume that the modes corresponding to the internal
degrees of freedom are independent on each other, we can
write the total Hamiltonian of the molecule as the sum

H ≈ Htr +Hrot +Hvibr +Hel +Hydin.

Here

Htr =
p2

2m
= kinetic energy

and m = mass of molecule.

Hrot =
L2

2I
=
h̄2l(l+ 1)

2I
= rotational energy

with L = angular momentum and I = moment of inertia.
If xi are distances of atomic nuclei from the center of
mass,

I =
∑

i

mix
2
i =

m1m2

m1 +m2
d2

Example: H2-molecule d = 0.75Å,
L = h̄

√

l(l+ 1), l = 0, 1, 2, . . .. Now

h̄2

2IkB
= 85.41K

is the characteristic temperature of rotational d.o.f.

Eigenvalues h̄2

2I l(l+ 1) have (2l+1) -fold degeneracy.

Hvibr = h̄ωv(n̂+
1

2
) = vibration energy
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The vibrational degrees of freedom of the separation d of
nuclei correspond at small amplitudes to a linear
harmonic oscillator. n̂ = a†a = 0, 1, 2, . . . Each energy
level is non-degenerate.

Hel = electron orbital energy

Corresponds to jumping of electrons from an orbital to
another and ionization. Characteristic energy levels are
>∼1eV ≈ kB104K, thus, in normal circumstances these
degrees of freedom are frozen and can be neglected. Hnucl

corresponds to energy related to nucleonic spin
interactions. The spin degeneracy is
gy = (2I1 + 1)(2I2 + 1), where I1 and I2 are the spins of
the nuclei
Energy terms are effectively decoupled at low
temperatures, i.e. the energy Ei of the state i is

Ei ≈ Etr + Erot + Evibr,

so the partition sum of one molecule is

Z1 =
∑

p

∞∑

l=0

∞∑

n=0

gy(2l + 1) ×

e−β
p2

2m
−β h̄2

2I
l(l+1)−βh̄ωv(n+ 1

2 )

= ZtrZrotZvibrZnucl,

i.e. the state sum can be factorized. Above

Ztr =
∑

p

e−β
p2

2m =
V

λ3
T

λT =

√

h2

2πmkBT

Zrot =

∞∑

l=0

(2l+ 1)e−
Tr
T
l(l+1)

Tr =
h̄2

2IkB

Zvibr =

∞∑

n=0

e−βh̄ωv(n+ 1
2 )

=

[

2 sinh
Tv
2T

]−1

Tv =
h̄ωv
kB

Znucl = gy = (2I1 + 1)(2I2 + 1).

Approximatively (neglecting the multiple occupation of
states) the state sum of N molecules is

ZN =
1

N !
ZN1 ,

where 1/N ! takes care of the identity of molecules. We
associate this factor with the tranlational sum. The free
energy

F = −kBT lnZN

can be divided into terms

F tr = −kBT ln

[
1

N !
(Ztr)N

]

= −kBT ln

[

1

N !
V

(
2πmkBT

h2

) 3
2 N
]

= −kBTN
[

ln
V

N
+ 1 +

3

2
ln kBT +

3

2
ln

2πm

h2

]

F rot = −NkBT ln

{ ∞∑

l=0

(2l + 1)e−
Tr
T
l(l+1)

}

F vibr = NkBT ln

[

2 sinh
Tv
2T

]

Fnucl = −NkBT ln gy.

The internal energy is

U = F + TS = F − T
∂F

∂T

= −T 2 ∂

∂T

(
F

T

)

,

so the internal energy corresponding to tranlational
degrees of freedom is

U tr = −T 2 ∂

∂T

(
F tr

T

)

= N
3

2
kBT

and

Ctr
V =

3

2
NkB

so we end up with the ideal gas result.
Since only F tr depends on volume V the pressure is

p = −∂F
∂V

= −∂F
tr

∂V
=
NkBT

V
,

i.e. we end up with the ideal gas equation of state

pV = NkBT.

Rotation

Typical rotational temperatures
Gas Tr
H2 85.4
N2 2.9
NO 2.4
HCl 15.2
Cl2 0.36

We see that Tr ≪ the room temperature.
T ≪ Tr
Now

Zrot =

∞∑

l=0

(2l + 1)e−
Tr
T
l(l+1) ≈ 1 + 3e−2 Tr

T ,

so the corresponding free energy is

F rot ≈ −3NkBTe
−2 Tr

T
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and the internal energy

U rot = −T 2 ∂

∂T

(
F rot

T

)

≈ 6NkBTre
−2 Tr

T .

Rotations contribute to the heat capacity like

Crot
V ≈ 12NkB

(
Tr
T

)2

e−2 Tr
T →
T→0

0.

T ≫ Tr
Now

Zrot ≈
∫ ∞

0

dl (2l+ 1)e−
Tr
T
l(l+1)

= − T

Tr

/∞

0

e−
Tr
T
l(l+1) =

T

Tr
,

so the free energy is

F rot ≈ −NkBT ln
T

Tr

and the internal energy

U rot ≈ NkBT.

The contribution to the heat capacity is

Crot
V ≈ NkB = f rot 1

2
NkB,

or in the limit T ≫ Tr there are f rot = 2 rotational
degrees of freedom.
Precisely:

N k B

C r o tV

T r
T

Vibration

Typical vibrational temperatures:
Gas Tv
H2 6100
N2 3340
NO 2690
O2 2230
HCl 4140

We see that Tv ≫ the room temperature.
T ≪ Tv
The free energy is

F vibr = NkBT ln
[

e
Tv
2T (1 − e−

Tv
T )
]

≈ 1

2
NkBTv −NkBTe

−Tv
T ,

so

Cvibr
V ≈ NkB

(
Tv
T

)2

e−
Tv
T .

T ≫ Tv

Now the free energy is

F vibr ≈ NkBT ln
Tv
T

and the internal energy correspondingly

Uvibr ≈ NkBT,

so the heat capacity is

Cvibr
V ≈ NkB .

We see that in the limit T ≫ Tv two degrees of freedom
are associated with vibrations like always with harmonic
oscillators (E = 〈T 〉+ 〈V 〉 = 2 〈T 〉).

C r o tVN k B r o o m
t e m p e r a t u r e

i o n i z a t i o n
d i s s o c i a t i o n
e t c .

T r T v
T

Rotation of homopolar molecules

The symmetry due to the identical nuclei must be taken
into account.
Example H2-gas:
The nuclear spins are

I1 = I2 =
1

2
,

so the nuclei are fermions and the total wave function
must be antisymmetric. The total spin of the molecule is
I = 0, 1. We consider these two cases:

↑↑ ↑↓
I = 1 I = 0

Iz = −1, 0, 1 Iz = 0
triplet singlet

orthohydrogen parahydrogen
spin
wavefunctions
symmetric:

spin wave
function
antisymmetric:

|1 1〉 = |↑↑〉
|1 0〉 = 1√

2
(|↑↓〉+ |↓↑〉)

|1−1〉 = |↓↓〉
|0 0〉 = 1√

2
(|↑↓〉 − |↓↑〉)

Space wave
function
antisymmetric:

Space wave
function
symmetric:

(−1)l = −1 (−1)l = 1

The corresponding partition functions are

Zortho =
∑

l=1,3,5,...

(2l+ 1)e−
Tr
T
l(l+1)

Zpara =
∑

l=0,2,4,...

(2l+ 1)e−
Tr
T
l(l+1)

and the partition function associated with rotation is

Zrot = 3Zortho + Zpara.
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When T ≫ Tr collisions cause conversions between ortho
and para states so the system is in an equilibrium. In
addition Zorto ≈ Zpara, so all 4 spin states are equally
probable.
When T <∼Tr the gas may remain as an metastable mixture
of ortho and para hydrogens. In the mixture the ratio of
the spin populations is 3 : 1. Then we must use the
partion sum

Zrot
N = Z

3N
4

ortoZ
N
4

para.

The internal energy is now

U rot =
3

4
Uorto +

1

4
Upara

and the heat capacity correspondingly

Crot =
3

4
Corto +

1

4
Cpara.

7.4. Occupation number representation
Let us recall the Fock space states, which are vectors in
Hilbert space

F = H(0)
p ⊕H(1)

p ⊕ . . .H(N)
p ⊕ . . .

with H(N)
p is N -particle Hilbert space. Here actually

H(N)
p = SH(N) is symmetrised for bosons and AH(N)

antisymmetrised for fermions.
Denote by

|n1, n2, . . . , ni, . . .〉
the quantum state where there are ni particles in the 1
particle state i. Let the energy of the state i be ǫi. Then

H |n1, n2, . . .〉 =

(
∑

i

niǫi

)

|n1, n2, . . .〉

N =
∑

i

ni.

We define the creation operator a†i so that

a†i |n1, n2, . . . , ni, . . .〉 = C |n1, n2, . . . , ni + 1, . . .〉

i.e. a†i creates one particle into the state i.

Correspondingly the annihilation operator ai obeys:

ai |n1, n2, . . . , ni, . . .〉 = C′ |n1, n2, . . . , ni − 1, . . .〉 ,

i.e. ai removes one particle from the state i.
The basis {|n1, n2, . . .〉} is complete, i.e.

∑

{ni}
|n1, n2, . . .〉 〈n1, n2, . . .| = 1

and orthonormal or

〈n′
1, n

′
2, . . . | n1, n2, . . .〉 = δn1n′

1
δn2n′

2
· · · .

Bosons

For bosons the creation and annihilation operators obey
the commutation relations

[ai, a
†
j] = δij

[ai, aj] = [a†i , a
†
j] = 0.

It can be shown that

ai |n1, . . . , ni, . . .〉 =
√
ni |n1, . . . , ni − 1, . . .〉

a†i |n1, . . . , ni, . . .〉 =
√
ni + 1 |n1, . . . , ni + 1, . . .〉 .

The (occupation) number operator

n̂i = a†iai

obeys the relation

n̂i |n1, . . . , ni, . . .〉 = a†iai |n1, . . . , ni, . . .〉
= ni |n1, . . . , ni, . . .〉

and ni = 0, 1, 2, . . ..
An arbitrary one particle operator, i.e. an operator O(1),
which in the configuration space operates only on the
coordinates on one particle, can be written in the
occupation number representation as

Ô(1) =
∑

i,j

〈

i
∣
∣
∣O(1)

∣
∣
∣j
〉

a†iaj .

A two body operator O(2) can be written as

Ô(2) =
∑

ijkl

〈

ij
∣
∣
∣O(2)

∣
∣
∣kl
〉

a†ia
†
jalak.

Example: Hamiltonian

H =
∑

i

− h̄2

2m
∇2
i +

1

2

∑

i6=j
V (ri, rj)

takes in the occupation representation the form

H =
∑

i,j

〈

i

∣
∣
∣
∣
− h̄2

2m
∇2

∣
∣
∣
∣
j

〉

a†iaj

+
1

2

∑

ijkl

〈ij|V |kl〉 a†ia†jalak,

where

〈

i

∣
∣
∣
∣
− h̄2

2m
∇2

∣
∣
∣
∣
j

〉

= − h̄2

2m
φ∗i (r)∇2φj(r) d3r

and

〈ij|V |kl〉 =
∫

φ∗i (r1)φ
∗
j (r2)V (r1, r2)φk(r2)φl(r1) d

3r1 d
3r2.
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Fermions

The creation and annihilation operators of fermions
satisfy the anticommutation relations

{ai, a†j} = aia
†
j + a†jai = δij

{ai, aj} = {a†i , a†j} = 0.

It can be shown that

ai |n1, . . . , ni, . . .〉 =
{

(−1)Si
√
ni |n1, . . . , ni − 1, . . .〉 , if ni = 1

0, otherwise

a†i |n1, . . . , ni, . . .〉 =
{

(−1)Si
√
ni + 1 |n1, . . . , ni + 1, . . .〉 , if ni = 0

0, otherwise

Here
Si = n1 + n2 + · · · + ni−1.

The number operator satisfies

n̂i |n1, . . . , ni, . . .〉 = ni |n1, . . . , ni, . . .〉

and ni = 0, 1.
One and two body operators take the same form as in the
case of bosons. Note: Since ai and aj anticommute one
must be careful with the order of the creation and
annihilation operators in O(2).
In the case of non-interacting particles the Hamiltonian
operator in the configuration space is

H =
∑

i

H1(ri),

where 1-particle Hamiltonian H1 is

H1(ri) = − h̄2

2m
∇2
i + U(ri).

Let φj be eigenfunctions of H1 i.e.

H1φj(r) = ǫjφ(r).

In the occupation space we have then

Ĥ =
∑

j

ǫja
†
jaj =

∑

j

ǫjn̂j

and
N̂ =

∑

j

a†jaj =
∑

j

n̂j .

The grand canonical partition function is now

ZG = Tr e−β(Ĥ−µN̂) =
∑

n1

∑

n2

· · · e−β
∑

l
nl(ǫl−µ).

7.5. Bose-Einstein (BE) ideal gas
In relativistic QM it can be shown that the spin of the
particle is connected to the statistics: if the spin is
integer, s = 0, 1, . . ., the particle is boson and the wave
function is symmetric wrt. permutations. If the spin is

1
2 -integer, the particle is fermion with antisymmetric wave
function.
In bosonic systems the occupations of one particle states
are nl = 0, 1, 2, . . .. Only the grand canonical ensemble is
simple to calculate. The grand canonical state sum is

ZG,BE = Tr e−β(Ĥ−µN̂)

=
∞∑

{n}=0

〈

n1n2 · · ·
∣
∣
∣ e−β(Ĥ−µN̂)

∣
∣
∣n1n2 · · ·

〉

=

∞∑

{n}=0

e−β
∑

l
nl(ǫl−µ)

=
∏

l

[ ∞∑

n=0

e−βn(ǫl−µ)

]

=
∏

l

1

1 − e−β(ǫl−µ)
.

Note: In Maxwell-Boltzmann we had
W ({n}) = 1

N !
N !

n1!n2!...
; here we effectively have

W ({n}) = 1, which is the correct way to symmetrise
multiple occupation numbers.
The grand potential is

ΩBE = kBT
∑

l

ln
[

1 − e−β(ǫl−µ)
]

.

The occupation number of the state l is

n̄l = 〈nl〉 =
1

ZG

∑

n1

∑

n2

· · ·nle−β
∑

m
nm(ǫm−µ)

= − 1

β

∂

∂ǫl
lnZG =

∂Ω

∂ǫl
,

and for the Bose-Einstein occupation number we get

n̄l =
1

eβ(ǫl−µ) − 1
.

Entropy

Because dΩ = −S dT − p dV −N dµ we have

S =

(
∂Ω

∂T

)

µ,V

= −kB
∑

l

ln
[

1 − e−β(ǫl−µ)
]

−kBT
∑

l

1

1 − e−β(ǫl−µ)
(ǫl − µ)e−β(ǫl−µ) −1

kBT 2
.

Now

eβ(ǫl−µ) = 1 +
1

n̄l
and

β(ǫl − µ) = ln(1 + n̄l) − ln n̄l,

so

S = −kB
∑

l

ln

(

1 − n̄l
n̄l + 1

)

+kB
∑

l

n̄l [ln(n̄l + 1) − ln n̄l]
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or

S = kB
∑

l

[(n̄l + 1) ln(n̄l + 1) − n̄l ln n̄l] .

7.6. Fermi-Dirac ideal gas
The Hamiltonian operator is

Ĥ =
∑

l

ǫla
†
l al

and the number operator

N̂ =
∑

l

a†l al.

Now
{al, a

†
l′} = δll′

and
{al, al′} = {a†l , a

†
l′} = 0.

The eigenvalues of the number operator related to the
state l,

n̂l = a†l al,

are
nl = 0, 1.

The state sum in the grand canonical ensemble is

ZG,FD

= Tr e−β(Ĥ−µN̂)

=

1∑

n1=0

1∑

n2=0

· · ·
〈

n1n2 · · ·
∣
∣
∣ e−β(Ĥ−µN̂)

∣
∣
∣n1n2 · · ·

〉

=

1∑

n1=0

1∑

n2=0

· · · e−β
∑

l
nl(ǫl−µ)

=
∏

l

{
1∑

n=0

e−βn(ǫl−µ)

}

=
∏

l

[

1 + e−β(ǫl−µ)
]

.

The grand potential is

ΩFD = −kBT
∑

l

ln
[

1 + e−β(ǫl−µ)
]

.

The average occupation number of the state l is

n̄l = 〈nl〉 =
1

ZG,FD
Tr n̂le

−β(Ĥ−µN̂)

=
1

ZG,FD

1∑

n1=0

1∑

n2=0

· · ·nle−β
∑

l′
nl′(ǫl′−µ)

= − 1

β

∂ lnZG,FD

∂ǫl
=
∂ΩFD

∂ǫl

=
e−β(ǫl−µ)

1 + e−β(ǫl−µ)
.

Thus the Fermi-Dirac occupation number can be written
as

n̄l =
1

eβ(ǫl−µ) + 1
.

m

k B T1
n l

e l

The expectation value of the square of the occupation
number will be

〈
n2
l

〉
=

1

ZG,FD
Tr n̂2

l e
−β(Ĥ−µN̂)

=
1

ZG,FD

1∑

n1=0

1∑

n2=0

· · ·n2
l e

−β
∑

l′
nl′(ǫl′−µ)

=
1

β2

1

ZG,FD

∂2ZG,FD

∂ǫl
2

= − 1

β

1

ZG,FD




∏

l′ 6=l

[

1 + e−β(ǫl′−µ)
]





× ∂

∂ǫl
e−β(ǫl−µ)

=
e−β(ǫl−µ)

1 + e−β(ǫl−µ)
= n̄l.

This is natural, since n2
l = nl. For the variance we get

(∆nl)
2 =

〈
n2
l

〉
− 〈nl〉2 = n̄l − n̄2

l

= n̄l(1 − n̄l).

k B T

m

D n l

e l
There are fluctuations only in the vicinity of the chemical
potential µ.
The entropy is

S = −∂Ω

∂T

= kB
∑

l

ln
[

1 + e−β(ǫl−µ)
]

+
1

T

∑

l

=n̄l
︷ ︸︸ ︷

e−β(ǫl−µ)

1 + e−β(ǫl−µ)
(ǫl − µ).

Now β(ǫl − µ) = ln 1−n̄l

n̄l
and 1 + e−β(ǫl−µ) = 1

1−n̄l
, so

S = −kB
∑

l

[(1 − n̄l) ln(1 − n̄l) + n̄l ln n̄l] .
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