Interacting matter

Classical real gas

We take into account the mutual interactions of atoms
(molecules)

The Hamiltonian operator is

H(N) Z pz +Z Tz] = |7.7,' -

i<j

’I"j|.

For example, for nobel gases an excellent interaction
potential is the Lennard-Jones 6—12-potential

o =1e[(2)- (2)]

We evaluate the partition sums in the classical phase
space. The canonical partition function is

Zn(T, V) = (T V,N) —pH™

—BH
cla<sxca1 Nl /dre

limit,
Maxwell-
Boltzman

=Tr ye

Since the momentum variables appear only as quadratic
in the kinetic energy terms they can be integrated and we
get

ZN = N' hSN / /dp1 de d’l"l d’l"N X
pz
exp | - Z L ()
i<j
1
= N V),
where

2 1/2
A = hi
2mmkpT

is the thermal wave length and
Qn(T,V) = /d'rl coodry R OIICh)

The grand canonical partition function is

Z(T,V,p) = Y e™NZn(T,V)

- %LQ(Q)NQMZVx
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when z = ef* is the fugacity.
We define an intensive function
1
w(z,T) = v InZ(T,V, ).
The grand potential is now

O =—kpTVw(z,T)

and
p
I T
o = @)
N 0Ow(z,T)
rFr=v- 0z
Eliminating z we can write the equation of state as
p=ksTo(p,T).

Expanding ¢ as the power series of p we end up with the
virial expansion.

Ursell-Mayer graphs

Let’s write
Qn = /d'f'l"‘dTNHG_ﬁv(T”)
1<j
= /dﬁ cdry H(1 + fij),
1<j
where

fig = flrig) = 0 —1
is Mayer’s function.

f(r)

-1
The function f is bounded everywhere and it has the
same range as the potential v. In general f is a small
correction as compared with the term 1. If v(r) = 0, then
f=0and Qn = Q% = V¥ ie. we end up with the
Maxwell-Boltzmann ideal gas.
We write Qn as the power series of Mayer functions f;;:

/dm -dry 1+Zf7,] Z fz]fkl
(i5) (ig)< (k)
>

(k1)<

fij frt fran +

(mn)

(i) <
Here
1
pair 1 <i<j < N,§N(N— 1) terms
(ij) # (kl) and only one

of terms (i5)(kl), (kl)(ij) selected,
%[%N(N - 1)][%N(N —1) — 1] terms



Graphs are build from the elements

o o /drl

J A fz]

Permutations of particles do not change the values of the
graphs, for example

///d7‘1drzdrgflzfzg=///d7'1d1~2dq~3fl3f237

as we can see by exchanging the integration variables 75
and r3.
3

3
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We classify the graphs:

e in coupled graphs or a clusters one can get from every
black dot (e) to every black dot following a chain of
lines (—).

e in uncoupled grpahs there are parts that are not
connected by a line (—).

It is easy to see that an uncoupled graph can be
factorized as the product of its coupled parts.

The sum of graphs of [ coupled points is called an
l-cluster.

We define ¢; so that it is the sum of all I-clusters, e.g.

/dr:V

@ =
q2 //drldr2f12
qs ///d7‘1d7“2d7“3(3f12f13+f12f23f13)~

One can show that

QN—ZCS

{v}

5

e 1; tells the number of [-clusters.

{Vl} l/1:0 I/2:0 1/3:0

) <N,le

1
variables (black dots e) to

1%
e
T

V.

| 1

Vl

Here

) restricts the number of the integration

N.
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tells how many ways there are to pick the
Hl(l ')

clusters from the set of N points.

e Everyone of the possible ;! permutations of the
[-clusters gives an identical contribution and must be

counted only once. That’s why the divisor v;! in the
qz

factor L.
1243

Denote

Z(T,V,p)

N iy

l

Z 1 gNN'5 (

)

- Nl
{m} 1

= 211, (el
{w} 1

- 1:[; l/l'[ ] :1:[6%5’.

We end up with the cumulant expansion of the grand
canonical partition sum:

Virial expansion

In the cumulant expansion every ¢; is proportional to the

volume V. We define the cluster integral b; depending
only on temperature so that

1
Zﬁ&ﬂ

2. = |
1=0

11
b =
1 nv q
_ “ v /d”'l /d’l"l 1+fij)
i<j coupled graphs
Now

w(z,T) = VanTV,u

Zflbz

For the density we get



We solve £ as the power series of the density p, substitute Low density gas
it into the expression of w and collect equal powers of p We write

together and end up with the virial expansion N-1
Qn = /d"“l"'/dT‘N_le_ﬁsz Vid

/dr'Ne_ﬁ 20 vl

p=kpTw(z,T) = kpT|p+ Bo(T)p* + B3(T)p> + - --].

The virial coefficients B,,(T) are now functions of the

cluster integrals {b;(T)|l < n}, e.g.
& (D)l < e With the help of Mayer’s functions the last integrand is

1
Ba() = (D)= [dr[1oe] - N1
2 exp -8 win| = J[I+ fin]
B3(T) = 4b3 —2bs - ;
By(T) = —20b3 + 18bgbs — 3by. N-1
= 1+ Y flrin)
N-1
Second virial coefficient + Z frin)frjn) +---.
We suppose that i<j

e the interaction has a hard core, i.e. the interaction is  Choose randomly two particles, 4 and j say. Now

strongly repulsive when r<o.

e the function f(r;n) deviates from zero only in the

e on the average, the interaction is attractive when range of the interaction.
> . .
r&zo, but the temperature is so high that fv(r) < 1 . .
there P 8 Bu(r) e the term f(r;n)f(r;n) can deviate from zero only if
' the particle j is in the range of the particle 4 (the
Now particle N must also be in that range).
—Bur) . J 0, when r<0
€ ~Y 1= Bu(r), when ra, e the prob.abili-ty tha‘g the particle j is in the range of
the particle ¢ is o< ;.
and

- e if the particle j is in the range of the particle ¢, then
By = 27r/ drr? [1 _ efﬁv(r)} the integral over the variable ry is o 1, since the
0 function f has a short range.

~ 271'/ drr? + 271'/ dr r?Bu(r) We see, that
0 o
a N—1 N-1
= b— . 1 N2
T [ E tmrsom = X 5 =0 ().
Here i< i<j
o In the low density limit we get
b = o’
3 N-1 .
o0 /drNefﬁZi YN = V4 (N - 1)/drf(r)
a = 727r/ dr v (r) > 0.
o N2
+0<>
With these approximations we end up with the van der |4
Waals equation of state.
For hard spheres the virial coefficients can be calculated ~ V(N -1) / dr f(r)-
exactly. Denoting
b 2r 4 Iterating we have
=737 T
we get QN =~ /drl"'/dTN—ze i<i Yx
] Bn
21 ho {V+(N—2)/drf(r>} <
3| w2
4| 0.287b3 /
N-1) [ d
5| 0.1105 {V” ) | dr i)
6 | 0.039b3 N-1

Q

-%VNg[l—F;p/drf(r)y
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where p = N/V. Now
. J N —
hr%(l—l—Nx) (1+

Tr—

SO
lim H [1+—}z[1+aN

i.e. in the low density limit

Oy ~ VNGE Np [drf(r) _ Q(o prd'r‘f(r)
Here Q(O) VN is Qn for the ideal gas.
Since the canonical partition sum was

1

ZN = WQN?

the energy can be written like

F(T,V,N)

—kBThl ZN
N2kgT

dr f(r),

where Fy(T,V, N) is the free energy of the ideal gas. The
equation of state is now

 9F  0Fy NZ?kpT

v = gy ov w40
_ NkgT [ 1
- [1 2p/drf<r>].

Comparing with the virial expansion we see that the

second virial coefficient is
1
)

By=—3 /drf(r):

Correlation functions

Statip linear response

Let Hy be the Hamiltonian of a system in the equilibrium
and

_ —BH,

=_—e

Po 70

the corresponding density operator. We disturb the
system with external time independent fields aq, which
couple to observables A, of the system:

A o W

The corresponding density operator is

1
7

p=—c 0

)

where

Z=Tre P = Ty PHo=2., Auae),

68

Now
(’)7Z _ 5TI'A e—ﬁ(Ho—ZaAaaa)
Oag, *
- a)
and
0%z _
Tr A AqePHo > Aaaa
Oan0ag prIx pe

when we suppose that I:IO, A, and /15 commute.
We define the static linear response function X3 so that

B 3<Aa> 10 102
Xog = dag B dag Z dan

1z 1 07 0z

" BZ dandag  BZ2 day dag

8 (Aads) =8 (Au) {4s).

We can thus write

§ <Aa> = %:xag&w,
vor = B((4a=(4a)) (45 - (45)))
_ <5AQ5A5>.

® X3 tells how much the expectation value of the
observable A, changes when the observable Az is
influenced by one unit of disturbance.

e The response functions are related to the correlations
of the fluctuations of observables. The correlation
C'yp of the observables A and B is defined to be

Cap = <5A 5B> :

where A = A — <A> is the fluctuating part of the
observable A.

5AL0A
calculated in the limit {a, = 0}. The responses xog

are determined, in the limit of infinitesimal
disturbances, by the undisturbed density matrix po.

The correlation functions < > can be

The theory of linear responses can be generalized for
dynamic disturbances.



e In spite of the possible incommutability of the
operators Aa, /15 and Ho the results are exact in the
classical mechanics. In quantum mechanics the
incommutability must be taken into accout. One can
show that the response function can be written as

Yap = (04554, )

where the operator AB) is

1

3!

A(B):A+l

2 {A’B} + HA,B] ,B] 4.

Particle density

Let #1,79,...,7n be position operators, i.e.
"qiw(rla v 77'1\/) = 7’1‘1/1(7’1, v 7TN)'
The number density operator is
p(r) = Zé(r — 7).
i

For example, in the pure state (71, ra,...,7N) We get

</3(’I")> = Z/drl"'/dri—l/dri+1"'/drN

i
V(T i, T i, )

When the particles are identical bosons or fermions |¢|? is
symmetric under permutations r; < r;, so

(p(r)) :N/drg--~/dT'N|¢(r,r2,...,7'N)|2.

We supposed that the system is closed into the volume V'
and v normalized. Then

/V<,6(r)> dr N/drl-~/drN|q/1(r1,...,T'N)|2
N.

In general, we have

[t

SO we can write

Density-density response function
We divide the volume V into elements AV,.
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\%

dr p(r) = N,
AV,

Let
N, =

be the number of particles in the element AVj,.
Let a, be a field coupling to N,. The Hamiltonian of the
system is

H

In the continuum limit we get

m-ﬁwwwm
Hy — Z/dré(’r —7;)a(r)
.H() — Za(i‘z)

i

Thus the field —a(r) is a I-particle potential.
The state sum Z can be thought to be a function of
variables {a,} or a functional of the function a(r):

Z=Z({aa}) — Zla(r)].
Now
10z

<NO‘> T B da,

and in the continuum limit

1 olnZz
= 5 ba(r)

We define the density-density response function x so that

0(%.)

p(r) = (p(r))

Xaﬁ 8ag ﬁ <6 a6 ﬁ>
and in the continuum limit
N 0{p(r)
X(rv r ) - (5&(’]"’)
~ BUOpr)IHE)).

Here
op(r) = p(r) — (p(r)) =
is the fluctuation of the density.

The approximativity of the last formulas is due to the

non commutativity the Hamiltonian with the operators
0p(r) and dp(r').



Pair correlation function
We restrict to homogeneous matter. Then

{p(r))

Let us consider the function

((r)p(r')) Z (8(r —#:)0(r" — )
+> (0

i#£]
o(r—7') (p(r))
+) (b — )3 — 7))

i#]

=p(r) =p.

(r—7;)8(r" — ;)

We define the pair correlation function g(r — r') so that

(p(r)p(r')) = po(r — ') + p?g(r — 1)

or

2

Po(r =) = 3 (5(r — )50 — #y)).

i#J

It can be shown that in a homogenous pure state

(r1,...,7n) of N particles one has
owy _ NOVD
/d’l‘g---/drN\w('r,r’,rg,...,rN)\Q.
We see that

e g(r — ') is proportional to the probability for finding
two different particles at the points r and r'.

e since simultaneous events far away from each other

cannot be correlated we have
Jm (A@)BE)) — (Am) (B

SO
lim g(r—7)=1.
|[P—7"| =00
The function
GO (ry,m9) = p*g(r1 — 72)

is called the pair distribution function. Distribution
functions of higher rank are defined analogously. In
particular, for a pure state the distribution function of
rank (degree) n is

G(")(rl,rg,...rn)

N(N —1)(N —
/d’!‘n+1"-/d’l"N|’L/)(’I'1,...,’l“n,’l“n+1,...,’I“N)|2.

2)-- (N —n+1)x
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The pair correlation function (like the higher rank
functions) can be generalized for nonhomogenous
systems, for example, in a pure state we have

')
/dr3 /drN|1/)rr r3, ..., TN

Compressibility
In the classical limit the density-density response function
is

p(r)p(r’ )9(7‘

x(r, ') = B(0p(r)op(r'))
= B{(p(r) = p)(p(r") — p))
= B{(p(r)p(r")) — Bp’
= Blpd(r—7)+p*gr —7')] — Bp*
or
x(r—7') = Bpd(r — ') + Bp*lg(r — ') — 1.

Its Fourier transform
x(q) = / dre"4Ty(r)
is
x(q) = Bp + Bp° /dr eI g(r) —1].

The structure function S(q) is defined so that

S@) = v (h@)(-a)
= 1+p/d're_iq'r[g(r) —1].
Now
T
o = | [areamso|

[ areaapm = p(-a)
so S(q) is a real and non negative function of the variable

q.
According to the definition of the response we have

§(5(r)) = [ an'xtr = )da(r).
Its Fourier transform is

dp(q) = x(q)da(q).

We suppose that da(r’) is constant. Then we can
interprete that

da(r') = du
is a change in the chemical potential, so
ON
Sp(r) = - = [ d' x(r — #') = 5u lim x().
q—)



We see that

1
Vv

ON

lim x(q) = En

q—0

(50),

It follows from Maxwell’s relations that

(),

1
— = = N2y,
o T
where k7 is the compressibility

Vv

1 (8V)
T V \ Op T,N.
Thus we get
lim x(q) = p*rz
or

1+ p/dr l[g(r) — 1] = pkpTkr.

Fluctuation dissipation theorem
We suppose that fields a,(t) are time dependent. Then
also the Hamiltonian

H(t) = o - Y Auaal(®)

depends on time.
Let A S
A(t) = en Hot Ae=# Hot
be the Heisenberg picture of the operator A. We use the
notation
0 R
<...> :Trpo...
for expectation values in undisturbed states.
It can be shown that in the linear limit one gets

Trdp(t) Aq
Z/ At xap(t —tas(t'),
ﬂ — 00

5Au (1)

where
Xaslt=1) = 100 =) ([Aa0) 5] )

Because

we can in fact write

i R . 0
Yan(t =) = 10t =) ([04a(t),545()] )
i.e. the response function depends only on the fluctuating
parts of the operator.
The Fourier transform with respect to time is defined as

Xap(w) = /O;

dt ei“’txa@ (t).
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The inverse transform is then
1 & )
Xenl) = o [ e )
— 00
We rewrite the response function as

Xap(t = 1) = 2i0(t = t')xqp(t = 1),

where

([34a(0).645(0)) >° .

1
"oy =

It can be shown that x,s(w) is analytic in the half plane
Imw > 0 and that

r

where 0 stands for an infinitesimal imaginary number.
The static response or susceptivity is

1

Xap(w) = P

LX)

w' —w —1i0’

oo

1 [~ Xapw)
a = a :0 = — dwi.
Xap = Xap(w =0) = — /_Oo "

This is the microscopic form of thermodynamic response
functions.

The time dependent correlation function Cog(t —t') is
defined as

Coplt —t') = <5Aa(t)5jxﬁ(t')>° .

So we can write the response function like

Xan(t = ¢) = 2 0(t =) [Cap(t = ') = Cpalt' ~ ).
One can show that in the frequency space one has

2h
Caplw) = T Xlg().

This relation is called the fluctuation dissipation theorem,
since

o the left side, Cop(w), describes spontaneous
fluctuations of the system.

e it can be shown that an external field oscillating with
the frequency w loses energy with the power
wXap(w), i.e. the right side is associated with
dissipations.

Pair correlation function and equation of state
We consider homogenous matter. According to the
definition of the pair correlation,

PPglr —r') = (6(r—#))d(r —#y)),

i#]



we have in a classical system

1 , _
EZ/dFd(rfri)é(r —rj)e PH

i#]

QLZ/dr1~~/dri,1><
N iz

/d”‘iJrl"'/d’f'j,l X
/drj+1"'/dr1ve_ﬁzk<l““

2

pg(r—1')

N(N -1 _ Vi
= 7( )/dT‘g"'dT‘Ne 'BZKJ "
Qn
The pressure is
__oE
P="av
where
E = (H)

is the expectation value of the energy.
We think that the system is bounded by an L-sided cube.

then
oE 1 OF

P= v T 32 oL

and we can write

OE . Erateo — EL
WVo= g =bim e
o1
= —llf(l)z <HL(1+6) - HL>7

where H)j, stands for the Hamiltonian in a AL-sided cube
and F)y, for the corresponding expectation value.
When we restrict to linear terms in € we obviously have

Erye = B+ (Hparo — Hr)py + O(€).

Here (--);; means that the expectation value is
evaluated in a L-sided cube with the weight e=#Hr

The Hamiltonian Hp 1) deviates from Hj, only in that
the coordinates z;, y; and z; can have values between

[0, L(1 + €)], while in Hj, they are restricted to [0, L]. We
rewrite the Hamiltonian Hy 4. with the help of the
scaled variables

like
2

> o Pi S (14 o)

(P T

Z + Zv(rgj)

i<j

+€ 722

Hr4e

2
P/i
2m

Q

D
2m

[2
%

+ Z 70 (175)

1<J

. Here we have used the relation
p = —ihVy = (1 + €)p.

Since the new, primed, coordinates span the same range
as the originals we can replace the new ones with the

originals.

Now
where (T) is the expectation value of the energy. For the
equation of state we get

Now the kinetic energy is same as for the ideal gas, i.e.

3
= — NkpT.
5 B

The latter term is evaluated like:

> rigt(rij)

i<j

(Hr(i4+e — HL>HL =e|=2(T)+ <

> rig(rij)

1<j

3pV:2(T>—<

(T)

<ZHJU'(%‘)> = szv'(m»
j N(N

-1
mj\f)/d’l"ld’rg’l"lgv/(’f‘lg) X

\/df,'3 . drNefﬁsz u(ri)

V

5 /dT127‘12UI(7‘12)9(T12)~

Thus the equation of state is

27V

pV:NkBTf 3

0* / dr 30/ (r)g(r).

The internal energy of the system
Oln ZN - § L GQN
op Qn 0B

2
can also be expressed with the help of the pair
correlation. Now

E=-—

NET —

1 0Qn 1 /
—_— - dry - dryo(rg) X
Qn 95 QN,; v drvolre)
e*ﬁziqv(m‘)
= —%% /dT’ldT'Q’U(T'lz) X

/d?‘3 S drNe_ﬂZKj v(riz)

1
_§p2/dr1drgv(r12)g(r12),

or the internal energy is

3
E = 3 NkpT + 27V p? /dr r2u(r)g(r).
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We see that the thermodynamic properties of the system
are determined by the pair correlation.

Approximating the pair correlation
To evaluate the state sum Zxn we have to perform
3N-fold integration. Correspondingly, for the pair
correlation, or for the pair distribution

2

P 9(7"12)
N(N-1)
(N

we need 3N — 6 integrations. In macroscopic systems NV
is of order 1023, so the evaluation of both of them is
equally tough. Like for the partition sum one can develop
approximative methods for the pair correlation.

We rewrite G like
N(N -1
¥/d’f’3"'d’f’N X
Qn

e_ﬁ Zi#l U(T‘M)e_ﬁ Zl<i<j U(TU).

G (ry9)
/dTg ce drNe_BZ«j U(T”),

G(Q) (7‘1, 7‘2)

Its gradient with respect to r; is
N(N -1
le(Q)(T‘l,T‘Q) = —M /d’l"g . "d’l"N X
QN
[Vﬂl(ﬁz) + Z Vﬂ/(?"u)] X
i>2

e P D, v(rij)

We employ the three body distribution
N(N -1)(N -2)
Qn
/dr4 e drNe_ﬁziﬂ' vlria),

G(S)(r17r27r3) = X

Now we can write

VlG(2) (’I"l, ’I"2) =
—BV10(r12) G (11, 73)

75 / drgvlv(Tlg)G(g) (T‘l, T2, 7"3).

This equation is know as the Born-Green equation.
Repeating the procedure described above one can derive a
relation which expresses V1 G®) (71,79, 73) as a functional
of the four body distribution G*). Continuing further we
would get a recursive chain of relations binding together
the n- ja n 4+ 1-body distributions. To exploit the
hierarchy of the relations we have to cut the chain
somewhere.

In the Kirkwood approximation one supposes that

G (r1,79,73) — G (ry,72)p,

when 75 moves far from the points 71 ja ro. Since G®) is
symmetric with respect its arguments one can write

G(g) (rla T2, T'3) =

1
p73 G(2) (7“1, TQ)G(z)('rQ, 7“3)G(2) (7”3, 7”1).

This is know as the Kirkwood approximation or as the
superposition approximation

One can also derive diagram expansions for the pair
correlation. Since ¢g(7) is a non negative function it can
be written as

g(r) = B0,

We define the graphical elements:

o" & free variable r

o & /dr

' e h(r,7") =g(r—7") — 1.

’I" ™

_fdrl
4

= /dm h(r,r)h(r' 7).
In the relevant graphs

e there are two white points o” and o™ together with
one or more black points, e"i.

e there is no direct link (—) from one white point to
the other white point.

e there is a path from every point to every other point,
i.e. they are connected.

One can show that B(r) is the sum of all these graphs.

Thus this graph expansion of B(r) depends on the pair
correlation g(r). Provided that we can sum the graph
expansion, we can solve g iteratively:

1. guess g(r).
2. evaluate B(r) using the graph expansion.
3. new g(r) is now

g(r) = e P+BO)
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4. if the new and old ones deviate from eachother We consider the ground state of N identical particles (the
remarkably we continue from 2. temperature is T' = 0), so the system is in a pure

quantum state W.

We suppose that, due to the interactions, the particles are

strongly correlated, i.e. the independent particle model is

not applicable. A good guess for the ground state wave

function is then the function, known as the Jastrow trial,

We divide the graphs in the expansion of B(r) into two
classes:

e nodal graphs are such diagrams that can be splitted
into two or more uncoupled parts by cutting them at
some black point.

\Ij(rla"'arN):(I)(rla"'er) H f(|7'17’l°]‘)

1<i<j<N

Here the pair correlation

fij = f(lri — ;)

describes the mutual correlation between the particles.
Since the factor
e bridge or elementary diagrams cannot be separated in F= H fii

parts by cutting them at any black point. 1<i<j<N

is symmetric with respect to the exchange of particles the
possible Fermionic character is embedded into the
function ®:

e for bosons
b(ry,...,7n) =1L

e for fermions & is, for example, the Slater
determinant of N non interacting particles and thus
_—Bu(P)+N()+E(r) antisymmetric with respect to the exchange of
g(r) = ’ particles.

We rewrite the pair correlation as

where N(r) is the sum of the nodal diagrams E(r) the
sum of the elementary diagrams.

The HNC (HyperNetted Chain) approximation assumes
that E(r) is insignificant, i.e.

When @ takes care of the statistics we can suppose that
in the ground state F' is real (in fact we could assume
that F' is positive since the ground state wave function
has no zeros).

g(r) ~ o= BU(r)+N(r) The Hamiltonian operator of the system is
N
It can be shown that the nodal diagrams can be summed. H=_ Z ﬁ V2 4 1 Z o(jrs — 7))
They satisfy the Ornstein-Zernike relation ~ 2m t2 oy Lo

N(r)= p/ dr'[g(lr —r'|) =1 — N(|r —7|)][g(*) — 1].  We evaluate its expectation value in the state
Via Fourier transformation we end up with the algebraic ¥ =re.

lati
relation . (S(k) — 1) One can easily see (integrating by parts) that

N(k) = Wﬂ

* 72 _
where S(k) is the structure function and /dm s dry TV =

1 292 2
N(k) = p/dre_ik'rN(r). 1 /d’“l ey [PV E
1
_i /d?"l . 'dT‘NFQV?l(I)F
Jastrow’s theory 2 e e
Although the previous cumulant expansion and + / dry-- dryF2®"Vid.
approximative methods for the pair correlation are valid

only for a classical system it turns out that these methods This relation is known as the Jackson-Feenberg energy
are useful also in quantum mechanical systems. form.
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Employing the pair distribution

N(N - 1)

BRI

g(|r /dr3'~drN|\I/\2

and writing

(T)

Il
/‘\
.MZ
AR
3
~_—

s
= - — dry - dryU* ViU
(U] ) 2m &
h2
_Np% /drg(r)v2u(7’)+T¢.7

where Tg is composed of the Fermionic terms
[dry - drnF2V2®2 and [dr; - - - dry F2@* V0.
The expectation value of the potential energy will be

correspondingly
1
i#]
N 1 1 Z/d d |‘~If|2 .
= <\Ij| \Ij> 5 - 71 TN Vij
i#]
1
Npi dr g(r)v(r).

(v)

Thus the energy per particle is

2

€= ——p/drg(r)v2u(r) +

B fp/drg(r)v(r) + %Tq;..

Supposing that the particles are bosons the pair
distribution can be written as

M / d’rg . d’r’NGZKj u”

? r2) =
p°g(ri2) IED

This is exactly the same as in the classical system. Now,
however, the potential term —pBuv;; is replaced with the
correlation factor u;; = In ffj So, we can apply diagram
expansions of classical systems. In particular we can write

g(r) = @“(T)+N(T)+E(T)7
where N(r) is the sum of the nodal diagrams and E(r)
stands for the contribution of the elementary diagrams.
In HNC-approximation we write

g(r) ~ W) +N ()

A corresponding approximation can be derived also for
Fermionic systems but then the nodal and bridge

diagrams are not composed only of black and white
points and connecting links. That approximation is called

the FHNC (Fermi HyperNetted Chain) approximation. In
the following we consider only bosonic systems.

Unlike in the classical systems the function u(r) is now
unknown. We use the HNC equation to eliminate u from
the energy expression. For one particle energy we get

ﬁ2
~ g0 [ AV Ing(r)

€ =
2

+87Lm p/drg(r)V2N(r)

430 [ Ayt

Since the functions N(r) and g(r) are related by the
Ornstein-Zernike relation

N(r) = p / ar' [g(r') — 1= N()lg(r — ']) — 1],

one can take the energy € as a functional of the pair
distribution ¢(r) only. It turns out that in fact a more
convenient variable is 1/g(r), so

€ = €[ \/g).

As well known, the ground state wave function is that ¥,
whose expectation value

(H) = — >/dr1---drN\I!*H\Il

(V] w
is minimized. We now seek the minimum of the
expectation of the Hamiltonian among all the functions of
Jastrow form. Equivalently, find out such a ,/g, that the
energy €[,/g] attains its minimum. A condition for the
existence of the extremum is that the variation

de = €[\/g+ 0/9] — €[\/7]

vanishes up to linear order in d,/g.
A straightforward calculation shows that

be = / dr L[y/g(r)] 63/9(r),

where

L[\/g(r)] Z—*VQ\/ )+ v(r)Vg(r) + W(r)y/g(r).

In order de to vanish independent on the variation ¢,/g,
the coefficient L must vanish, i.e.

(NVg(r) + W(r)Vg(r) =

The function W (r) is the so called induced potential. Its
Fourier transform is

W) = p / )
R (S-1)2(28 +1)
T om 52 '

Although the above Euler-Lagrange equation for /g looks
like a Schrédinger equation at 0 energy it is



e strongly nonlinear since the induced potential W
depends (nonlinearly) on the structure factor S,
which in turn depends via the (linear) Fourier
transform on (,/g)%.

solvable only numerically. There are several solution
methods but they all are iterative.

an equation for the ground state only. Even if there
are more solutions the solutions associated with
other energies have no physical meaning.

In the Jastrow theory the excited states are constructed
explicitely. For example

e let every particle in the system have the momentum

hk, i.e.
excite the particle i with the operator e?*7i.
every particle is excited with the same phase, i.e.

if the ground state is ¥y the excited state is

Uy

where p(k) is the Fourier transform of the density
operator

One can show that for bosons this kind of collective
excitation Uy in the long wave length (small wave vector
k) limit is energetically most favorable.

The excitation energy can be obtained evaluating the
expectation

(Wi H [Wg)
(Wi | Uy)

Ey = <H>\1;k =

A straightforward calculation shows that

h2 k2

Ee=FEot+ 5 Sy

:EO

when Ej is the energy of the ground state Uy. The
excitation energy is thus

h2k2?

Gk:Ekf m

By =

These kind of excitations and corresponding excitation
energies are called Bijl-Feynman ecitations.

Density fluctuations and correlation
length

Let’s consider the canonical partition sum

ZN = S_BFN = TI‘NS_BH,
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where F is the free energy. We divide the volume into
elements V,,, whose particle numbers are

No =0,1,2,
Let 5(]\7m N,) be an operator satisfying

IN),
0,

ifNa|N>:No¢|N>

&MWQWF{ if Ny |N) # N, |[N),

i.e. §(Nu, Ng) is the Kronecker delta function. The
identity operator operating in the volume element « can

be written as -
= > 6(Na,No)
No=0

The identity operator of the whole system can be written,
for example, as

P ITT [
Here }°y , stands for the summation over all possible
configurations, i.e.

> 5(Na,Na)

N,=0

o Lo

[c ol o}

Z[...]: Z Z e[

{N(x} NI:
The partition sum is now

TI'Nei’BFI

Try Y [[6(Na, No)e

{Na} @

Z Tr H 6(Ny, Ny )e PH

{Na} a
> e
{Na}

Here

e PFN Tr H§(NQ7NQ)6_5H

= Tl"{Na}eiﬁﬁ,

where Tryy,_} means that in the evaluation of the trace
the summation is over all microscopical degrees of
freedom keeping, however, the particle numbers N,
constant and fixing for the total number

Af::j{jzvd.

The function 3 }
FN = FN(T7 V7 {Na})



is the free energy or the reduced free energy of the
configuration {N,}.

The quantity e ?F~ is proportional to the probability for
the configuration {N,}. Thus the most probable
configuration is such where the reduced free free energy
Fn(T,V,{N,}) attains its minimum.

Density functional theory

In the continuum limit the configuration {N,} is
described by the density p(r) and the reduced free energy
will become a functional of the density:

Fy = Fylp.

Now all the microscopical degrees of the freedom are
reduced to the single density distribution. This kind of
model is call the density functional theory.

Normally the reduced free energy cannot be calculated
exactly. A phenomenological method is the Local Density
Approzimation, LDA):

e the reduced free energy is the volume integral of the
free energy density fn.

e the free energy density at every spatial point depends
only on the local particle density and its low order
derivatives at that particular point.

Thus the energy functional of the system is

Fylpl = [ dr fulor), Vp(r). V(). .. )

If there is an external potential u(7), there is the
additional term [ dru(r)p(r) in the functional.

As we noted above the most probable configuration
corresponds to the minimum of the reduced free energy.
We restrict to homogenous systems so that the constant
density po minimizes the functional Fy[p]. Let

be a small deviation from the constant density. The
simplest model for the variation of the energy functional is

FN[(SP] =

[ [0 5 6o 4 5 12 (T2

where fy, f1 and fo are constants independent on the
position r (but can depend on the temperature and the
constant density pg). In the expansion

e there is no linear term in the variation dp, since
according to the hypothesis py minimizes the energy.

e due to the minimum condition the coefficients f; and
f2 must be positive.

7

e the gradient term (Vp)? favors slowly varying
densities, so the wave lengthts of the density
fluctuations cannot be arbitrary short. At points r
and 7’ close to each other the deviations dp(r) ja
dp(r') are roughly the same.

physically the gradient term can be motivated by the
tendency of the stochastic thermal motion to smooth
down the density differences in close by volume
elements. Thus the factor f; depends on the
correlations of the particles in volumes close to each
other.

Since the particle number is constant we have

=0) =0,

ON = /dré,o(’r) =dp(q

and, with the help of the Fourier transform, the free
energy can be written as

1

Px=Fx+3y
q

"(f1 + f20°)0p(q)dp(—q),

where ZZI means that the term g = 0 is not to be
summed.
Since the variation dp(r) is real its Fourier transform
satisfies
ip(—q) = op(@)"
S0
3p(q)dp(—aq) = [5p(q)*.

The physical meaning of this term is that (dp(q)dp(—q)),
as we recall, describes density correlations.
the probability for the fluctuation dp is now

—BFN

Plép] o« e

1

TV Z/ (fl + f2q2)|5P(Q)|2) ‘

q

X exp|—

Correlation length

Since the distribution P[dp] derived above is of Gaussian
shape one can directly read from it the correlation
function

kgTV
0p(q)dp(— _—
(6p(q@)op(—q)) P
_ kgTV 1
f2 @+
where
2 N1
dc = &
f2
The density-density response x(q) was defined so that
p

x(q) = BpS(q) = - (0p(q)dp(—q)),

V



when S(q) is the structure factor. So we get

1 1

R

x(q)

Its inverse Fourier transform is

11
L e

:EAMT

_L1_ |k
T \/;

is the correlation length.
Since we had limg_o x(q) = p?kr we must have

x(r)

The parameter

1

fl - p2K/T7
SO 9
§

P

pPRT

The pair correlation h(r) = g(r) — 1 can be written with
the help of the density-density response (excluding the
autocorrelation proportional to J-function) as

) = 55x(0)

We see that

kBTHT 1 —r/€
h(’/’) = 52 Ee / .

Note The results are characteristically qualitative
because they are derived using a nonmicroscopic model.

Scattering in medium
We consider the scattering of photons or massive particles
in a medium. One can show that the intensity of the
elastic scattering is proportional to the structure factor,
ie.

1

I(k,q) o< S(q) = i (6p(q) 6p(—q)) -

Here k is the wave vector of the incoming particle and g
its change due to the scattering, i.e. the wave vector of
the scattered particle is

K=k—q.
Since the scattering is elastic we have
K| = |k

The intensity of the inelastic scattering in turn is
proportional to the dynamic structure factor:

I(k; g, w) o S(q,w),

where g the change in wave vector and hw in the energy.

When the temperature approaches the critical point from
above the isothermal compressibility xp diverges, i.e. an
infinitesimal change in the pressure causes an finite
change in the volume. Then

1
fim o —
P2 K eritical
point

On the other hand, there is no reason to assume that, for
example, the correlations would become independent on
the wave vector at the critical point, as would happen if

£2
f2 == pQK;TmE 0.

point

That’s why we can suppose the correlation length &
diverges at the critical point.

Consider elastic scattering of light. When the scattering
angle is 6 the change in the wave vector is

0
= 2ksin —
q sin 7,
the wave length being
27
A=—.
k
We see that the intensity is
1 1
1(0) x 5 X 5 -
f1+ faq sinZg—i-(ﬁ)
Then at the critical point
1
I(0) o< NCXE
Sin 5

i.e. the scattering intensity is strongly peaked at forward
directions and the total cross section (o [ dQI(6))
diverges. Thus the radiation cannot pass through the
medium: in the vicinity of the critical point tranparent
matter becomes opaque. The phenomenon is called the
critical opalescence.

Discrete interaction models

We first consider interaction between atomic spins in a
solid. Assuming that the atoms are bound to their lattice
sites the spin degrees of freedom are independent on other
degrees of freedom, that is

H =~ Hspin + Hother'
Now the state sum can be factorized:
Z="Tr e_BH ~ ZspinZother'

In the case where the factorization is not complete one
can define the spin Hamiltonian

Hspin = H(517327~"73N> :H<{Sl})

1 _
= _B lnTr{si}e BH.



Here Trys,; means that the trace is evaluated keeping the
spin configuration fixed. The total partition function is

7 = Trspme—ﬂH({Si}),
where now the trace is over spins.
In the spin model

e the most important interactions are between nearest
neighbours.

e the interactions are associated with the links
connecting the lattice points.

e the spins associated with the lattice points are the
dynamical variables.

In some cases it is possible to construct spin models also
for continuum systems by discretizing the field variables.
We denote the lattice points by i, j,.... If the spin
quantum number of the particles in the model is s, the
state sum is

7 - zefﬁH({Si})
{oi}
= i z‘;: e~ PH({s:})
o1=—35 oN=—35

Heisenberg’s model
In the external field By the Hamiltonian according to the
Heisenberg model is

H:—% ZJijSi'Sj—’yBQ'ZSi
1] 2

when the magnetic moment of the particles is

K = 7Si.

We use notation < ij > for such spins ¢ 7, which are
closest neighbours of each other and count this kind of
pair only once. We suppose further that the interactions
do not depend on the lattice sites, i.e. J;; = J. Then

H:—JZSZ"S]',

<ij>
when the external field is By = 0.
Ferromagnetic coupling J > 0

The interaction favors parallel spins. One can easily see
that the state
R~

8

=ls,s,.
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where the spins at all lattice points are parallel is the
ground state.
Let z be the coordination number of the lattice (the
number of nearest neighbours at each lattice point). For
example, in the cubical lattice z = 6 and in the two
dimensional square lattice z = 4. It is easy to see that the
ground state energy is
Ey=—NZJs2

2
Since the scalar product s; - s; is invariant under
rotations the Hamiltonian of the system is also
rotationally invariant. The ground state

e does not obey the symmetry of the Hamiltonian. It is
said that a spontaneous symmetry break has occured.

e is very degenerated. Rotating all spins equally we
end up with a state with the same energy.

Antiferromagnetic coupling J < 0

The interaction favors neighbours with opposite spins.
Supposing that opposite configurations were possible for
all nearest neighbours the classical ground state energy
were

Ey = N% Js2.

This kind state of alternating spins,
® |0i = :|ZS> - ‘Sa
i

is, however, not a quantum mechanical eigenstate of the
operator

Syenl)y

H = —-J Z S; - Sj
<ij>
S Z [(si +s;)? — 87 — 57
2 — J
<3>

since the spin pairs are not coupled to eigenstates of the
operator
2

(Si + Sj)2.
The correct eigenstate can be solved only in the one

dimensional system (so called Bethe’s Ansatz method).

Ising’s model

We simplify the Heisenberg model by restricting the spin
quantum number to the case s; = % and taking into
account only the z components. Then

H=-J Z 0;0; —hZUZ,

<ij>

where o; = +1 and h is proportional to the external
magnetic field.

The Ising model can be solved (i.e. the partition function
evaluated) exactly for one and two dimensional systems.
Analogical to Ising’s model are for example



e binary mizture composed of two species of atoms, A
ja B, where each lattice point is occupied by either A
or B type atom.

e lattice gas, where at each lattice point there either is
an atom or is nothing.

Potts’ model
We let the spin take ¢ different values,

Ui:1727"‘7q7

but only the neighbouring spins in the same spin state are
allowed to interact, i.e.

H=-J Z 5(0’1',0'j).

<ij>

We see that this Potts model reduces to Ising’s model
when ¢ = 2.

When the coupling is ferromagnetic (J > 0) the ground
state is such that every spin is in the same state. The
ground state is thus ¢-foldly degenerated. Hence at
certain low temperature the system transforms to a phase
where one of the values of the variable is dominant. The
number of these ordered phases is q.

Spin glass

In the spin glass either the positions of atoms or their
interactions (or both) vary randomly. For simplicity we
assume that the spin glass Hamiltonian is of the form

H=— Z JijO'Z‘O'j,

<ij>

where the couplings J;; are random quantities.
The simpliest choice is

the sign being stochastic. This is known as Ising’s spin
glass. In a system of this type there are frustrations i.e.
going around a closed path along links setting the spins
so that the energy of each link is minimized the last spin
direction will differ from the one we started with. That’s
why all interactions cannot be minimized simultaneously
and the ground state cannot be determined.

A 24 A
fo T
bl

\

—><L°3—+—N<I>

XY model
We confine the spins in the Heisenberg model to a two
dimensional plane, i.e.

S; = Sizt + SiyJ-
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When the spins are treated classically the XY model
Hamiltonian can be written as

H=-J Z cos 0,

<ij>
where 0;; = 0; — 0; is the angle between neighbour spins.
If the coupling is ferromagnetic, J > 0, all spins are
parallel in the ground state. The we can assume that at
low temperatures the angles 8; vary slowly as a function
of the position. Thus one can write

00(z,y)

ox
pe N e

2 2<ax>2'

In the continuum limit we get the field theoretic model

O(r; +ai) —0(r;) = a

and

1 00

1
cosﬁij%1—§0?j%1—

1
HzE0+§K//dxdy|V9|2.

Vertex models

In the vertex models the dynamical variables are
associated with the links and the interactions to the
lattice points common to the links. As an example we
consider models for crystalline phases of water (H2O) (ice
models):

e in the ice the oxygen atoms correspond to the lattice

points.

the links binding oxygen atom pairs are hydrogen
bonds.

the hydrogen bond is unsymmetric: the hydrogen ion
is always closer to one of the atoms.

the state of the hydrogen bond can be described by
the two valued spin variable o;; = £1.

the hydrogen ions must satisfy so called ice
conditions: each oxygen atom must have exactly two
hydrogen as neighbours. The water molecules of the
ice are thus binded together by weak hydrogen bonds.

We approximate the ice structure with two dimensional
square lattice. There are 6 possible link configuration for
each lattice point. We have a so called 6 vertexr model.

| l l

—TA T T
—Oe Qe Qe
| t t

Let 6; be the ice condition for the lattice point i:

-

1, condition satisfied
0, condition not satisfied.



A suitable Hamiltonian for the system is such that the
energy of the forbidden configurations is infinite, e.g.

H=lim > U1-6,).
U—o0 7

Now the energy of an allowed configuration is zero. One
can also associate different energy e, with each vertex
type k. The the total energy of the lattice, in an allowed

configuration, is
6
E = Nyey.
k=1

Here Ny, is the total number of the k type verteces.
One can easily see that the state sum is

7 = Z e_ﬁz(l;lN’“Ek Hoi-

{oij} i
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Phase transitions

Lee-Yang theory

A phase transition happens at an exactly determined
temperature which depends on the density, pressure and
other intensive properties of the system. Since the state
variables behave differently on each side of the transition
point the partition sum must be non analytic at the
transition point. The energy spectrum {E, } of finite
number particles in a finite volume is discrete so the state

sum
N = Z e PEn

n

is a positive and, on the positive real axis # > 0 and in
the neighbourhood of it, an analytic function of its
argument . In this kind of a system there can be no
sharp phase transition point. Phase transition can thus
occur only in the thernodynamic limit where

N
V — oo and N — oo but v — p = constant.

The model by Lee and Yang explains how the analytic
state sum develops toward non-analytic form when we
approach the thermodynamic limit. We consider a system
of hard spheres confined in the volume V. Let V| be the
volume of one sphere. Then

%

Ny~ —
Vo

is the maximum number of spheres. The state sum

N,
Za(T,V,p) = Y 2N Z(T,V,N)
N=0

is a polynomial of degree N, of the fugacity

2 =ePr,
We use the shorthand notation
Z(z) = Za(T,V, ).

Let &1,&,...,¢&N,, be the zeros of the polynomial Z(z).
Since Z(0) = 1, we have, according to the fundamental

theorem of algebra,
z
1-—.
(-2)

Because Z(z) is real when z is real the zeros must occur
as conjugate pairs, i.e. for every root &, there must be
the root &;;.

When we approach the thermodynamic limit the number
of zeros of the partition function Z(z) tends to infinity.
One can assume that the real axis remains clean of the
zeros excluding, maybe, some separate points. In the

N'm
Z(z) =
n

=1



vicinity of those points the density of zeros is very high
and the function Z(z) non-analytic.
Let’s suppose that the zeroes of the partition function

Z(z) close to the real axis condense on the curve C. The

function Z(z) is analytic on both sides of the curve but
its analytic properties are different on different sides.
When the zeros lying on the curve C' condense to
continuum we can write

InZ(z) = Zn:ln (1 - ;)

= /Cdgw(g)m <1z)

dn = dg w(§)

is the number of zeroes on the arc d¢ of the curve. The
density w(§) is o< Ny, o< V' and so an extensive quantity.
From this expression for the partition function one can

Here

clearly see that Z(z) is not analytic if z happens to lie on

the curve formed by the zeroes.
As an example we consider the state sum which in the
vicinity of zy behaves like

Z(z) = e cosh {% (z — zo)} ,

where ®(z) is analytic. The zeroes of the state sum are
then at the points

1
fn:zo+ib(n+2), n=0,+1,4+2,....

Since
In Z(z) = ®(z) + In cosh [%(z — zo)]

is extensive the argument 7/b(z — zg) must be extensive.

The only possibility is that 1/b oc V. We denote

Vo
b= —,
%
so in the thermodynamic limit

V — oo or b — 0 but vy = constant

we get
1 1 1
v nz = V(I)(Z)—'_V In cosh {Uo (z—zo)]
. V@) + g+ I(z0-2), z2<2
%@(z)—i—%ln%—&—:—o(z—zo), Z > 2.

Because in the grand canonical ensemble we have

oV = kgThhZ
olnZ
N =
Tz

we see that now

PV = kpTd(z)+ Uﬁ kTV|z — 20| — kpT®(z)
0 z—20
0P \%
N = zﬁ—l—ﬂ—zsgn(z—zo).
0z o

We are thus dealing with a typical first order phase
transition where the density jump is
_ 2mz

Ap = .
Vo

Isings model

Practically the only exactly solvable models are the one
and two dimensional models by Ising.

We consider one dimensional chain of spins

mr |
1234 -+ N,

where we apply periodic boundary conditions, i.e. we set
ON+1 = O01.

The Hamiltonian operator of the system is then

N N
H = —JZUiU¢+1—hZUi
i=1 =1

N-1 N
= —J E O'iO'H_l—JO'NO'l—hE i,
=1

i=1
where each spin variable can attain the values
g; = +1.

The state sum is

7 - L eBJ Zi\;l 0;0i41+0h E:\;l o
Sy

g1 a2
N
— E E E H65J010i+1+%[5h(0i+0i+1)_
o1 02 on =1

We define the 2 x 2 transition matriz T so that

Ta’o” _ e,@JUJ/—‘,—%ﬂh(U—&-o/),

where 0,0’ = +1. The state sum can now be written as

Z Z . ZTamTam O
ON

o1 02

Z(TN)JM =TrTV.

o1

Z

Looking at the matrix
T eﬂJ+Bh efﬁJ
= =BT oBI-Bh
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we see that the transition matrix is symmetric. Thus its
eigenvalues

2=t [cosh(ﬁJ) + \/sinh*(Bh) + 64/5?’} ,

are real. Let S be a orthoganal matrix diagonalizing T'
(composed of the eigenvectors of T'), i.e.

_ga AT 0
oo (0 0)s

e[ DY 0
™ =25 ( 0 ()\_)N>S

and, due to the cyclic property of the trace,

Z = TrTN =Trss! ( (T 0 N )
0 (A7)

= )Y+ )",
The logarithm of the state sum is

mz = ()" ()Y

()]

Since in the thermodynamic limit, N — oo,

/\,N
@)*Q

NIn At +1In

holds we get

1A\
: + .- (2 +
]\}gnooan — N [ln)\ + N </\+> ] NjooNln)\ .
Just like in the free spin system the free energy is
interpreted as the magnetic Gibbs function. Its value per
spin is

N - N b

—kpTIn [cosh(ﬁh)—i— sinh?(Bh) 4+ e=467 | .

The equilibrium values of other thermodynamic variables
can be calculated from the Gibbs function. In particular,
the average of the spin variable is

_ <4>_i81n2__8G/N
7 = Y% TNgTan T on
sinh(5h)

\/sinh2 (Bh) + e—4PJ .

The expectation value o is an order parameter of the
system: o = 0 corresponds to completely stochastically
oriented spins whereas |o| = 1 corresponds to the case
where all spins are ordered themselves parallely.

The order parameter ¢ is analogous to the magnetization
M of the free spin system when h corresponds to the
magnetic field H. The susceptivity is analogically

_oM 9o
T OH T Ok’

In the weak field limit h — 0 we get then

X

oo 1 2J
= — = ekBT |
oh|,_, ksT

X

When the coupling is ferromagnetic (J > 0) the system
magnetizes strongly at low temperatures. When the
external field is removed the system returns to the
disordered state o = 0: there is no spontaneous symmetry
break.

If the coupling is antiferromagnetic (J < 0) the
polarization is damped exponentially.

The one dimensional Ising chain is thus a paramagnetic
system without any phase transitions. However, since it
does not obey Curie’s law it is not a Curie paramagnet.
Two dimensional Ising model can be solved exactly
generalizing the transition matrix method (Onsager,
1944). It turns out that in this case there is a phase
transition at the temperature

T. = L ~ 2.269 J.
In(1+ v2)

The specific heat diverges logarithmically at the critical
point T' = T, and the phase transition is continuous.

Monte Carlo methods

Because, in general, interacting systems can not be solved
analytically numerical methods are of great value. An
important class of numerical methods, Monte Carlo
methods, handles interacting systems using stochastic
simulations. Suitable simulations for continuum systems,
like 3He- *He-liquids and electron gas, are mostly based
on Green’s function Monte Carlo.

In discretized systems one can often apply Metropolis’
Monte Carlo method:

e Let the possible configurations of the system be
jedJ={L2,...,K}
and E(j) the corresponding energies.
e Form a chain j1, jo,. .., j, of configurations.

e Choose the next configuration, (n 4 1)’th, in the
chain drawing randomly from the set J of the
possible configurations. The drawed configuration, j,
will be
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— accepted if AE = E(j') — E(j,) < 0.

— accepted with the probability o< e #AF if
AE > 0.

e When the length N of the chain {j,} increases
(N — o0) the probability for each configuration j

approaches 4
P(j) o e PEW),

e The chain is thus a canonical ensemble which can be
used to evaluate expectation values.

Note The method assumes that the energy eigenstates of
the system are known. So it can be applied for handling
of e.g. Isings models and all classical systems.

If the energy states are unknown the quantization must
be included in the simulation.
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Critical phenomena
In a second order phase transition the system normally
goes from a higher temperature phase to a lower
temperature phase with less symmetry. We say that a
symmetry is broken spontaneously. For example,
ferromagnetic material will get polarized below a certain
critical temperature. The spin rotation symmetry is
broken. The amount of the symmetry break is described
by an order parameter, which is usually assigned to the
expectation value of some observable of the system. In
the ferromagnetic system a suitable order parameter is
the magnetization m. In the symmetric phase m = 0 and
in the ordered, i.e. symmetry breaking phase m # 0.
Let the order parameter be m and h the external field
coupling to the corresponding observable. We consider
the system close to the critical point T = T,.. When we
denote

T=T-1T,,

the critical point is at origin of the (7, h)-plane.

Since the critical point is a singular point of
thermodynamic potentials we divide them into regular
and singular parts. For example, we write

F(T7 m) FO(T7 m) + F@ (T7 m)

G(T,h) = Go(T,h)+Gs(T,h) =F — hm,
where the functions Fy and Gg are regular at the vicinity
of the point (7 = 0, h = 0) whereas the functions Fs and
G5 are singular there. Their differentials are

dF(T,m) = —=SdT+hdm
dG(T, h) —SdT — mdh.

Critical exponents

Close to the critical point the singular parts are (with
great accuracy) proprtional to some powers of the
thermodynamical quantities 7 and h. The critical
exponents or the critical indeces are defined as follows:

e «,c’ determine the singular part of the specific heat

so that
0*G
- (50)
oT* /4,
_ K=« when T > T,
N K'(-7)", when T < T.,.

In practice we have o/ = a.

e [ tells how the order parameter behaves:

(T) = 0, when T > T,
)= K (—7)%, when T < T..

e .7 are related with the susceptivity:
(5), = (5)

oh )y \on®)r
_ K77, when T > T,
N K'(=7)™", when T < T..

X:



Within the experimental accuracy v = 7.

e § tells how the order parameter depends on the
external field h at the critical temperature T' = T,:

m(T., h) = K h/°.

e v determines the dependence of the correlation
length on the temperature,

§=Klr[™".

The index v is not actually a thermodynamic
quantity since it is related with the microscopical
parameter €.

Scaling theory

A scalable equation is such that it remains invariant
under the scale transformations if the units of
measurements are selected by scaling them properly. As
an example we consider Navier-Stokes’ equation of flow:

ov
g

1 2
9 (v-V)v—f—m—pr-i-vV v,

where v is the velocity, p the density, p the pressure and f
the force. The coefficient

is the kinematic viscosity and 7 the viscosity. Let T', L, V'
and M be the dimensional units of the time, length,
velocity and mass. With the help of the corresponding
measures t', v, v and m’ (for example the mass is

m = m/M) the Navier-Stokes equation takes the form

o
ot

1
m!p'

(W -V =F -

1 2
v/ / = vl /.
P+ RV Y
The parameter R is the dimensionless Reynolds number

L? _ E _ mpVL

R:7_
Tv v n

b

which characterizes the flow: if R<10...100, the flow is
usually laminar and if R<10...100, it’s turbulent.
Looking at the Navier-Stokes equation written using the
measurement numbers we see that the behaviour of the
system is dictated by the Reynolds number. If one can go
from a system S to a system S by scaling the measuring
units so that the Reynolds number remains fixed, the
equation describing the system as well as its solution
remain also invariant. We say that the systems S ja Sy
are similar.

As a concrete example we consider two systems which are
composed of same material, i.e.

p=pijav=un.
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We scale the linear measure by the factor s i.e.
L1 =slL.

If we want the systems to be similar the Reynolds number
must stay invarinat. For example

82L2

spTv’

_L2_ L3 _
_TI/_T11/1_

so the scaling factor of the time s; must be

ST = 52.
Let A and A; be some dimensional units of measure
corresponding to similar systems S and S;. It turns out
that all scaling laws are of the form

—d
A =s “147
where is d, is a rational number.

Scaling hypothesis
In dense matter (liquid, solid, ...)

e the microscopical length scale is determined by the
distance between atoms or molecules.

e when macroscopic properties are considered the
microscopic structure is invisible.

e the only macroscopically essential parameter related
to microscopical properties is the correlation length
£, because in the vicinity of the critical point it grows
macroscopically large.

We can thus assume that when we approach the critical
point the classical similarity will hold:

e Consider two systems of same material with
correlation lengths € and &;.

The correlation length tells the scale of the
fluctuations, i.e. the scale of structure of the matter
(provided that we cannot observe the atomic
structure).

When the systems are observed using such
magnifications that £ and & seem to be of equal
length (and possibly adjusting sampling frequencies)
no differences between the systems can be found.

Since the correlation length at the critical point is infinite
all sizes of fluctuations related to the order parameter are
present. Except the atomic scale, there is no natural
measure of length in the system. Thus the system looks
similar no matter what scale is used, the system is self
similar. The self similarity assumption is formulated
mathematically as the scaling hypothesis:

e The singular parts of all thermodynamic potentials
scale as exponential functions of the correlation
length & only.



e The quantity A behaves in the vicinity of the critical
point like
Aoce,

where d 4 is the scaling dimension of A.

The scaling dimension of the correlation length is then
obviously d¢ = —1. Further, we see that the scaling
dimension of the quatity A*BY--- is

d(pzpv...) = xda +ydp + .
Because the critical index v was defined so that
£ o |7,
the scaling dimension of the temperature is
dr =v

The scaling dimensions of the most important quantities
are

e Correlation length £: We saw above that

de = —1.
Temperature 7: We had

d,

;.
Length £: Since the correlation length determines the
length scale of the system £ scales like £ i.e.

dy = —1.

Wave vector q: The wave vector is inversely
proportional to the length so

dy=1.

Order parameter m: The index § was defined so that
m o (—7)%, so

dm = fBd;

p
.

Free energy G: Scale transformation do not affect the
free energy of the system, so

dg = 0.

Free energy per volume element g: Since g = G/V,
we have
dg =dg — dv = —dd, = d,

when d is the spatial dimension.
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e Specific heat c: Since the specific heat (density) is

82
c~ T, —‘g,
or

the scaling dimension d. satisfies the condition

2
de=dy—2d, =d—=.
v

Thus we have for the specific heat
c o 5(2/V)_d o ‘T|d”_2

and, according to the definition of the critical index
a?
cox |77

Hence the critical indeces are related via the scaling
law
a=2—vd.

Field h: In an equilibrium the order parameter m is

mo 29
T
SO
Ay = d—dy,.
For the field h we thus have
dhzd—dmzd—é.
v

The suceptivity obeys according to the definition of the
index v the relation

om

_um -y
an, <1t

X

SO
Ay — dp, = —d,.

Comparing the dimension obtained from this for d; with
our earlier result we end up with the scaling law

v =vd—20.

Further, the index § was defined so that at the critical
temperature

m o h'/°.
Then we have
dp,
dm = ?7

from which, using our earlier result, we get the scaling law

vd
6=— —1.
B

The hard to measure index v, which is related to the
microscopical correlation length, can be eliminated from



the three scaling laws derived above. We are left with
scaling laws relating thermodynamic indeces:

a+28+y = 2
pie—-1) = .

Note Although the scaling laws derived above are based
on phenomenological arguments they are valid within
experimental accuracy.

Widom scaling
We consider the Gibbs function per primitive cell (or
particle)

g(7,h) = go(7,h) + gs(7, h),

where we have again separated the regular and singular
parts from eachother at the singular point (7 = 0,h = 0).
Its differential is

dg = —sdt — mdh,

when s = S/N is the entropy per primitive cell (or
particle). Since the order parameter m is zero at
temperatures above the critical point the critical
exponents related to it must come from the singular
function g.

The functio f is a generalized homogenous function if it
satisfies the condition

f()\o‘lxl,)\”xg, .. ) = /\f(l‘l,xg, .. )

According to Widom’s hypothesis the function g, behaves
in the vicinity of the critical point like a generalized
homogenous function, i.e. it scales like

gs(NP1, ATh) = Ags(T, h),

when A > 0 and p and ¢ are system independent
exponents.

Because the scaling equation holds for all positive values
of A it holds when A = h=/9, in which case \%h = 1.
Thus we can write the scaling hypothesis as

gs(rh) = g, (1)

= W ()

Here we have defined

o(x) = gs(x, 1).
The critical indeces can be obtained as follows

e 3. Take the derivative of the scaling equation
gs(NPT, ANh) = Agg(T, h),

with respect to the field h and recall that the order
parameter is
s(1,h
m(th) = _ag (T )a

oh
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so we have the scaling condition
Mm(APT, Nh) = Am(T, h). (%)

Since the order parameter is supposed to be m # 0,
we have 7 < 0. Then we can choose A so that
APr = —1. Setting h = 0 we get

m(r,0) = (—7)=9/Pm(—1,0).
According to the definition we have
m(,0) o< (—7)7,

S0 )
8= -9
b
0. We set in the equation (x) 7 =0 and A\? = 1/h, so
m(0,h) = h/971m(0,1).

According to the definition m(0,h) o h*/?, so

~,7'. According to the definition the susceptivity is

om(r, h)
h)= ——"-+
x(7,h) TR
which close to the critical point behaves like
~ T, when 7 > 0
X (=7)™"", when 7 < 0.

Differentiating () with respect to the field h we get
N2 (NPT, ATh) = \x(T, h).
Setting h = 0 and \P7 = £1 we have
X(7,0) = |r|~Ca=D/Py (£1,0).
From this we can read for v and +/
r_2¢—1
p

e «,a’. The specific heat is

0%g
X —5.
ar?
Differentiating the scaling equation

gs(NPT, ATh) = Ags(T, h)

Ch

twice with respect to 7 we get
A2c (NPT, ATh) = \ep (T, h).

We set h =0 and A\P7 = £1 and compare the result
with the definitions of o and «’:

T, kun 7 >0
cp X ,
& (=7)7*, kun 7 <0.
We see that
, 1
a=a =2——.
p



It is easy to verify that the Widom scaling hypothesis
leads to the scaling laws

a+28+y =
-1 = .

Kadanoff scaling theory

Unlike the Widom scaling hypothesis the method
developed by Kadanoff (1966) is based on the microscopic
properties of matter.

Outlines of Kadanoffs method:

e Combine the original microscopical state variables
blockwise to block variables.

e Determine the efective interactions between the
blocks. This coarsing of the system is called the block
transform.

e The block transforms form a semigroup, so called
renormalization group. One can perform transforms
sequentially.

e Because in a system at the critical point there is no
natural length scale the transformed systems look
copies of eachother. Thus the critical point
corresponds to a fized point of the transformations.

We apply the method to the d-dimensional Ising spin
system.

Block transform

We denote by 1, j, ... the origininal lattice points and the
blocks obtained by combining them by indeces I, J, .. ..
The block spin ¢} of the block I is defined so that

0}: E g;.

If we end up with the blocks I by scaling the length
measure by the factor L, each block has L¢ spins.
Because in the Ising model each spin can get the values
o; = =1 the block spin can get the values

or =LY —L'+2 ... L¢

i.e. alltogether L¢ + 1 different values.
Let H be the original Hamiltonian. We denote

H[O’l] = ﬂH = 7KZO’Z‘(T]‘ - th
(ig) @

The state sum is

Z=e¢9=Tre Ml = Z e~ Mol
{oi}

where G = GG, G is the Gibbs function. We divide the
trace summation into two parts

Z = Z e~ Mloil
{oi}
o} {o: i€
— Z e~ Hlor].
{0}
Here we have defined
e Hlorl Tr{g,l}efH[oi]
= Z e~ Hloil H5 <O—’I7 ZUZ> .
{o:} I iel

As can be seen from the definition
H[U’I] =1In TI“{U}}B_H[U’]

the Hamilton block function H[o}] is actually the reduced

free energy. Thus it can be written as

Mot = Hlal| = TS|,y

where H|[o;] o is the expectation value of the energy
[oa

(the internal energy) evaluated in the block configuration
{o}}. Hence the Hamiltonian block function contains the
internal entropy related to the internal variables of the
blocks.

Close to the critical point, due to the scale invariance, we
assume the reduced free energy to take approximately the
same form as the original Hamiltonian. To achieve this
we scale the range of the block spins so that

o = 207,

where o7 = £1. Because the maximum of the block spin
is L% we must have 2z < L9,

Critical exponents
According to Kadanoff effectively the most important
values of the block variable are +z. We denote

HL[O'[] = H[ZO’[].

We let the new Hamiltonian Hj, to be of the same form
as the original H:

HL[O'[] = —KL ZO’[JJ —hLZJ[.
(I1J) 1

The parameters K and h; depend now on the scale L.
Let the values of the parameters at the critical point to be

K = K,
h = h.=0.
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Since at the critical point nothing changes while scaling

we must also have

Ky,
hr

K.
he = 0.

We consider the neighbourhood of the critical point. We

suppose that h # 0, so also the corresponding scaled field
satisfies hy, # 0. We write the original coupling constant

as

K=K.+AK

and the corresponding scaled coupling constant as
K, =K.+ AKj.

We now vary the scale factor L by a (small) amount 0L.
The relative variation of the scale is then L/L. we can
assume (as a good approximation) that the relative
variations of the scaled parameters are proportional to
the relative variation of the scale, i.e.

SAK, . oL

AK;, L
Shr, 5L
-— Y—,
hr, L

where = and y are constants.
When the change in the ratio is infinitesimal we get the
differential equations

o alnAKL
o JdlnL
o 81HhL
YT omL

which after integration give

Ky
hr

K, + L*(K - K,)
LVh.

To obtain the same energy from the original and scaled
Hamiltonians the coupling to the external field must
satisfy the condition

hZO'Z' = ho/I = hzo; = hpoy,
il
so the field scales like hy, = zh. We see that
z=LY and y < d.

The same reasoning allows us to assume that the relative
deviation of the temperature from the critical point,
_T-T,

=5

T

behaves like the relative deviation of the coupling
constant K from the critical value, i.e.

T, = L*T.
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Thus the Gibbs function per spin unit scales like
g(tr,hr) = g(L°T, LYh) = Lig(t, h),

where the factor L is due to the fact that the new block
contains L? old spins. Writing

pd

qd

T

we end up with the Widom scaling.

Renormalization group
Let us suppose that the Hamiltonian H depends on the

parameters
Hn= (/1'17/~L2’ - ')>

For example u = (K, h), as above. Block transforms are
now mappings in the parameter space

1= [L

Let R, be the operator corresponding to the block
transform, i.e.
p— pr = Rpp.

Since the block transform is a change in the scale we
must have
RIR; =R .

Furthermore, it does not matter in which order the scale
transforms are performed:

R,R;=R; R;y.

In the block transform we loose information, for example
the detailed knowledge of the values of the original spin
variables. Thus it is impossible to return to the original
system by scaling: the operation Ry, has no inverse
transformation among the operations { Ry }. We see that
the operations

R={Rp}

form a commutative semigroup which is called the
renormalization group.
A point p* which satisfies the condition

i =Ry* VRER,

is called a fized point. A system corresponding to the
parameter values p* is at the critical point since any
transformation of that systems results an exactly identical
system. The set of those points that after sequential
block transforms lead to the fixed point p* is called the
critical surface. If the system is on the critical surface,
but not at the critical point, it is at a critical point of the
phase transition. However, one can still observe it using
the scale where microscopical details are visible.



