Bosonic systems

Bose condensate

Number of particles
The avaerage number of particles is
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Let us consider a free non interacting gas. Then
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Now
1< e < 0.

Since 7; > 0, the fugacity is restricted to lie between
0<z<l1

or pu < 0.
We treat the state p = 0 separately, since the
corresponding occupation number 7ip can become

macroscopic:
z
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We write the grand potential as
QBE = kBTln |:1 — eﬁ“]
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Let us define functions g, (z) so that
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For the number of particles we get
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When the temperature is high or the density low, the
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term ’_‘T,Q is negligible as compared with , i.e.
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Now g3/2(2) is a positive monotonically increasing
function and
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g3/2(1) = £(3/2) = 2.612.

Vit

z
1

Let us choose the density p = g ja T so that

N
=

and z = 1. If we still increase the density or decrease the
temperature the increase of the term % A3, must originate
from 12 A}, since z < 1, i.e.

2 =2.612,

X = gapal2), when & A3 < 2.612
NX3 = D023 4gs5(1), when X3 >2.612.
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the state p = 0 will be occupied macroscopically forming
the Bose-Finstein condensate. The formation starts when
the temperature is less than the critical temperature
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or the density greater than the critical density
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When T < T,, the relative fraction of the condensate is
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Pressure
With the help of the grand potential the pressure is
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We are dealing with a 1st order phase transition.
C,
‘He liquid

A second order phase transition to a super liguid state at
the temperature T, = 2.17K. The expression given above,
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results T, = 3.13K.

This is called a A-transition.

Two liquid modell
When T < T,, we suppose that *He is composed of two
components: super and normal components. Then

p = ps+pn
J Js + Jn

When T — 0, then 2 — 1, but 2o 5~ 0.1.
This is due to the fact that “*He is not an ideal liquid:
between “He atoms there is

e 3 strong repulsion at short distances,

e an attraction at longer distances.

Black body radiation (photon gas)

The photon is a relativistic massles boson, whose spin is

S=1,s0 g=25+1=3. In the vacuum only transversal

polarozation exisits, so g = 2.

The energy of a photon is

ep) = V(moc®)* + (pc)?
= pc= hke.

With the help of the frequency f or of the angular
velocity w the energy is

€e=hw="n2nf=hf.

Since the wave length A is

we have
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Density of states
Employing the periodic boundary conditions the wave

vector is 9
Y(3
k= T (ng,ny,nz),

so the number of states in the vicinity of k is
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With the help of the angular velocity this is
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We denote now
dN, = f(w) dw,
SO »
w* dw
f(w) dw = V W

The sum over quantum states can be replaced by the
integration like
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Here k is the wave vector and

\ = L, left
| R, right

is the polarization.

Photons obey the Bose-Finstein statistics

Let’s consider n photons each with the angular velocity
w. The total energy of this system is

en(w) = nhw,



so the system is equivalent with a single harmonic
ocillator,

1
E,=(n+ §)hw = nhw + 0-point motion.
Thus we can consider a system of one harmonic oscillator
which is allowed to exchage energy with its surroundings.
So we can set u = 0.
The Hamiltonian of the system is

H-= kZ(hck)a}c/\akA.
A

According to the Bose-Einstein distribution the
occupation of the energy state e(w) is

1
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n(w) =
The total energy is
E= / dw f(w
The energy density will be
o
v
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where the energy density at the given angular velocity
obeys Planck’s law of radiation
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We can see that the maximum of the intensity follows the
Wien displacement law

Wmax = constant x 7.

At the long wave length limit, A > k ¢ orw < 22T the
energy density obeys the Rayleigh—Jeans law

e(w,T) = vakio x w?T.

At a given temperature the energy density will be
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Thus the energy density obeys the Stefan-Boltzmann law
4
e(T) = z O'T4,

where o is the Stefan-Boltzmann constant
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Now
Q=F—uN =F,

since 4 = 0. Thus the free energy is
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is the total energy.
The entropy is
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Radiation of a black surface
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We can think that the emitting surface is a hole on a
hollow container filled with isotropic black body
radiation. The radiation power can be determined by
counting the number of photons escaping through the
hole per time interval.



In the time interval 7 the photons escaping into the
directionf originate from the region whose depth is

£(8) = cT cosb.

The total energy of photons landing into the space angle
element df) at the direction 6 is

e(T)Acrcosb g

Thus the total energy of the radiation is
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The radiation power per unit area is
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Absorption and intensity of radiation
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When the radiation arrives from a given direction its
intensity is

E _ Acre(T)
At Ar
ce(T)

or
I =40T*.

The absorption power to a perpendicular surface is I A.
Phonons

Classical harmonic lattice
We let the ions of a crystal to oscillate in the vicinity of
their equilibrium position. We suppose that

1. At the average equilibrium position the crystal is a
Bravais lattice. With every point R of the lattice we
can thus associate an atom. The vector R, however,
reperents only the average position of the ion.

2. Typical deviations from the equilibrium positions are
small as compared with the interatomic distances.

According to the hypothesis 1 the atoms of the crystal
can be identified with the Bravais lattice points R; e.g.
r(R) stands for the actual position of the ion associated
with the lattice point R. If u(R) is the deviation of the
ion R from its equilibrium then

r(R) = R+ u(R).

Let ¢(r) be the potential energy of two ions separated by
the distance r. The energy of the whole lattice is then

1 /
U = 5 #r(R)-r(R)
RR
= % > ¢(R—R'+u(R) —u(R)).
RR

When we use the notation P(R) for the momentum of the
ion R the total Hamiltonian is

H=ZP?(R)+U.
R
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Harmonic approximation

Since the evaluation of the total potential U starting from
the actual pair interactions is hopeless we approximate it
resorting to the hypothesis 2 (u(R) is small). The first
terms in the Taylor series of the potential U are
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+% 3" (w(R) - u(R') - V(R — R))
RR’

S (R - w(®) - VPHR - R)
RR’

+0(u?).

U =

In the equilibrium the total force due to other ions
affecting the ion R is

F=-) V¢(R-R).
RI
Since we are at a equilibrium this force must be zero.

Thus the linear term in the series expansion of U vanishes.
Up to the second order we are left with

U = Ueq + Uharm’

where U*®? is the potential energy of the equilibrium and

[rharm i [uH(R) — U’H(RI)]¢HV(R - R’)
x[u, (R) — u,(R")]
bty = 220



If we are not interested in the quantities related to the
equilibrium of the crystal ( total energy, total volume,
total compessibility, ...) we can forget the term U®4. The
harmonic potential is usually written more generally as

rm 1
yharm _ 3 > uu(R)Dyy (R — R)u, (R).
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The former expression can be obtained by setting

Du(R—-R)=0pp > éuw(R-R") - ¢, (R-R).
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The heat capacity of classical lattice
The volume element of the the 3N dimensional classical
phase space formed by the IV ions of the lattice is

dl = 1;[ % du(R)dP(R) = 11;[ % du,(R)dP,(R)

and the canonical partition sum
Z= / dl e PH.
The total energy E is then
1 0
E=— [dlePPH=——InZ.
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When we change variables,

wR) = 5 u(R)
PR) = §'/°R(R)

the partion function can be written as
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Since all dependence on the temperature is outside of the
integral the energy can be calculated easily
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The heat capacity is

OF

Cv:a_T

=3Nkg.

This expression for heat capacity, due to the lattice
vibrations, is known as Dulong-Petit’s law.
Experimentally

e at low temperatures the heat capacity is smaller than
the one obtained from the Dulong-Petit law. When
we approach the temperature 7' = 0 the heat
capacity tends to zero.

e even at higher temperatures the measured heat
capacities do not approach the Dulong-Petit limit.

Normal modes of the harmonic crystal

One dimenional Bravais lattice

If the separation of the lattice points in the one
dimensional Bravais lattice is a the lattice points are na,
n an integer. Every lattice point na is associated with
one atom.

We suppose that in this one dimensional lattice only the
nearest neighbours interact. Using the notation

K= ¢”(.CE),

the harmonic potential of the lattice is
1
harm __ 2
yham = §K En [u(na) — u((n + 1)a)]”.

The classical equations of motion are

_aUharm
du(na)
= —K[2u(na) —u((n — 1)a) — u((n + 1)a)].

Mii(na) =

We suppose that the N points of the lattice form a ring,
i.e. the deviations satisfy the boundary conditions

u((N + 1)a) = u(a); u(0) = u(Na).

We seek solutions of the form
u(na,t) o etlkna—wt)

To satisfy the boundary conditions we must have

e'lkNa — 1

We see that the allowed values for k are

2t n
7

n integer.

Substituting the exponential trial into the equation of
motion we see that the angular velocity w must satisfy

2K(1 - K 1
w(k) = \/w = 2\/M|sin 5ka\.

The solutions represent a wave advancing in the ring with
the phase velocity ¢ = w/k and with the group velocity

v = Ow/0k. If the wave length is large or the wave vector
k small then the disperssion relation

is linear and the phase and group velocities equal.



One dimensional lattice with base

We suppose that in the primitive cell there are two
atoms. Let the equilibrium positions of the ions to be na
and na + d, where d < a/2. We denote the deviations of
the ions these equlibrium positions by u1(na) and uz(na).
For the simplicity we suppose that the masses of the
atoms are equal. The harmonic interaction due to the
nearest neighbours is

pharm g Z[ul (na) — us (na)]Q

ﬁ;wna) ~ui((n+ Da)P,

where K describes the interaction of the ions na and
na + d, and G the interaction of na + d and (n + 1)a.
The classical equations of motion are

6Uharm
~ Ouy(na)
—Klui(na) — uz(na)]
—Glus(na) — ua((n — 1)a)]
6Uharm
Ouz(na)
—Kluz(na) — u1(na)]
—Gluz(na) — ui((n + 1)a)].

Miiy(na)

Miiy(na) =

Again we look for a solution of the form

i(kna—wt)

ui(na) = ee

u2(na) — €2ei(kna—wt)_

Substituting these into the equations of motion we end up
with the linear homogenous simultaneous equations

[Mw? — (K +G)ler + (K + Ge™*%ey; = 0
(K + Ge?*ey + [Mw® — (K +G)]ea = 0.
This system has a non trivial solution only if the
coefficient determinant vanishes. From this we obtain

w2_K+G
M

1
+ M\/K2 + G2 + 2K G coska.

The ration of the amplitudes is

€1 K + Ge“m

€ - :FlK + Geikal .

For every allowed wave vector k (counting N) we get two
solutions. Alltogether the number of the normal modes is
now 2N.

We consider couple of limiting cases.

Case 1. k<L 7/a

The angular velocities of the modes are now

_ 2(K+GQG) 2
w = M O((ka)”)
w = KG (ka).

2M (K + G)

Since the latter dispersion relation is linear the
corresponding mode is called acoustic. In the former
mode w = /2(K + G)/M, when k = 0. Since at the long
wave length limit this mode can couple with
electromagnetic radiation it is called the optical branch.
At the long wave length limit, when &k ~ 0, the
amplitudes satisfy

€1 = F€2

the upper sign corresponding to the optical mode and the
lower sing to the acoustic mode.

Case 2. k=m7/a

At the border of the Brillouin zone the modes are

2K
\/ S optical branch
/2
5, acoustical branch.

Correspondingly for the amplitudes

w =

€1 = Fe€q.

Case 3. K > G
The dispersion relations are now

[Z-o(2)
[Binfiro(E)]

and the amplitudes satisfy

w =

€1 N Fe€Eq.

The frequency of the optical branch is now independent
on the wave vector. Its magnitude corresponds to the
vibration frequency of a molecule of two atoms with equal
masses and coupled with the spring constant K.

On the other hand, the acoustical branch is the same as
in the case of the linear chain.

Case 4. K =G

Now we have a Bravais lattice formed by single atoms
with the primitive cell length a/2.

Three dimensional Bravais lattice of single atoms
Using the matrix notation the harmonic potential can be
written more compactly

harm __ 1 ! !

hem = > u(R)D(R - R')u(R).
RR

Independent on the interionic forces the matrix
D(R — R') obeys certain symmetries:
1. D,(R-R)=D,,(R - R)
This property can be verified by exchanging the order of
differentiations in the definitions of the elements of D:

8*U
DL(R—R)=—2~ | .
wo (R — R) Ouy(R)Ou,(R') |40

2. D(R) = D(-R)



Let’s consider a lattice where the displacements from the
equilibrium are u(R). In the corresponding reversal
lattice the displacements are —u(—R). Since every
Bravais lattice has the inversion symmetry the energies of
both lattices must be equal, no matter what the
deviations u(R) are, i.e.

Uharm - Z R RI) (RI)
? R
= Z D(R - R')(—u(-R'))
? kR
= % > u(R)D(R' - R)u(R)),
RR'

for an arbitrary w(R). This can be valid only if

D(R-R')= D(R - R).

In addition, according to the symmetry 1, we have

D,(R-R)=D,,(R- R,

so the matrix D is symmetric.

3. ZR D(R) =0

We move every ion R to R + d. This is equivalent with
translating the whole lattice by the amount d. The
potential energies of the original and the translated
lattices are equal; in particular at the equilibrium 0, i.e.

0 = > dDu(R-R)d,
RR
= > Ndyd, | > Du(R)
724 R

Since the vector d is arbitrary we must have
> p(m) =
R

The classical equations of motion

6Uharm

M) = =5, @ ~

_ Z D,,(R— R')u,(R'),
RV

or in the matrix notation
ZD (R—R)u

form a system of 3N equations. Again we seek solutions
of the form

(R)

u(R,t) = ecik-B-wt)

Here the polarisation vector € tells us the direction of the
motion of the ions. Furthermore we require that for every
primitive vector a; the solutions satisfy the Born-von
Karman boundary conditions

u(R + Nia;) = u(R),

when the total number of primitive cells is N = Ny NoN3.
These conditions can be satisfied only if the wave vector
k is of form

k:—b1+

na n3
by + —bs.
N, N, 2T

Here b; are vectors in the reciprocal lattice and n;
integers.
We see that we get different solution only if k is restricted
into the 1st Brillouin zone, i.e. there are exactly N
allowed values for the wave vector.
We substtitute the trial into the equations of motion and
end up with

Muw?e = D(k)e, (%)

= ZD(R)e
R

is so called dynamical matriz. For every allowed k we
have as the solution of () three eigen values and vectors.
The number of normal modes is therefore 3N.
Employing symmetry properties of D(R) we can rewrite
the dynamical matrix as

where
-ik-R

_ 1 ~ik-R _ ik-R
Dk) = §ZD(R)[6 +e —2]
= ZD )[cos(k - R) —1].
Thus the dynamical matrix is
=-2 Z D(R) sin® k R).

We see that D(k) is a real and symmetric function of k.
Since D(R) is symmetric D(k) is also symmetric. We
rewrite the equation (%) as

D(k)es (k) =As (k)es (k)

As the eigen values of a real and symmetric matrix A, (k)
are real and the eigenvectors €;(k) can be
orthonormalized, i.e.

Es(k) gy (k) = 653’; sysl =1,23.

The polarizations of three normal modes are €5(k) and
the angular velocities correspondingly

Let us suppose now that the mutual interaction of the
ions decreases rapidly with the increasing separation.
Strictly speaking we suppose that

lim D(R) = O(R™®).

— 00

Then, at long wave length, i.e. when k =~ o, we have

sin2(%k ‘R) ~ (%k ' R)?



and
k2

D(k) =~ — 7

(k- R)*D(R).
R
Let ¢;(k)? be the eigenvalues of the matrix

1 7. 2
—537 > (k- R’ D(R).

R

We see that at small wave vectors the frequency is
ws(k) = ¢, (k)k.

Thus the dispersion of all three modes is a linear function
of k so all three modes are acoustical. In general c,4(k),
together with w,(k), depend also on the direction k of the
propagation in addition to the mode s.

Three dimensional lattice with base

We proceed exactly like in the case the one dimensional
lattice with base. We suppose that there are p ions in the
primitive cell. Every ion in the primitive cell adds one
degree of freedom so the total number of modes at a
given wave vector k is 3p. The corresponding frequences
are wi(k), where now s =1,2,3 and i = 1,2,...,p. The
corresponding displacements are

(R t) z(k) i(tk-R—w ’(k)t)‘

The polarizations are no more orthogonal but satisfy

p

Z Ei* (k) : Ei’ (k) = Jggr.

i=1
Analogically with one dimensional lattice 3 of the modes
are now acoustical and the rest 3(p — 1) modes optical.

Quantum mechanical treatment
Let us consider the harmonic Hamiltonian

1 2
> PR
R
+% > u(R)D(

RR

describing the lattice. Let ws(k) and €,(k) be the
frequences and polarizations in the corresponding
classical lattice. We define the operator ag, so that

Hharm

R - R)u(R')

aks — \/_ Z efzk R k)
M ws(k) . 1
[ on B o P(R)] ‘

¥

The Hermitean conjugate ay,. of the operator ag, is

t sz

aks = \/_ze

Muws (k) ) 1
[ B )iy [

The operator al is called the phonon creation operator

S
and ag, the phonon destruction operator.
We employ the canonical commutation relations for the
position and momentum

[uu(R), P, (R)] =
[UH(R), Uy (RI)]

ihdu SRR
[Pu(R), P,(R)] =0,

the identities

Z eik'R [ 0, Eisnot a reciprocal vector
7 “ | N, kisa reciprocal vector

and

Y ekR -0 R#0
k

together with the property of an orthogonal vector set

Z[es

One can straightforwardly show that the creation and
annihilation operators obey the commutation relations

es(k)]y = .
]H 12

[aks, afk,sl] = 5’43,{:'633'

[ags ap o] = [a}cs,a =0.

T
kls’]
With the help of the creation and destruction operators
the operators u(R) and P(R) can be written as

h
U(R) = ﬁ Z m(aks + af—ks) X
e “LR
PR) = Z /ths aks_a
es(k)eZk'R.

The Hamiltonian is now
1
H= Z hws (k aks )

This is simply the Hamiltonian of the system of 3N
independent harmonic oscillators whose energies are
correspondingly

E= ans

Here nj, the eigenvalues of the occupation number

hws(k)

operator fig, = a}csaks, ie. ng =0,1,2,...

Einstein’s model
Let us suppose that every ion of the crystal moves in a
similar potential well. Then

H= ZhwE(a;csaks + 5),
ks



where the parameter

kBTE
h

WE =

is the Einstein frequency common for all 3N oscillators
and Tg the corresponding Einstein temperature.
The partition function of one single harmonic oscillator is

o0
Zharm(w) = Tre Ahwlelaty) — Ze—ﬂﬁw(n-‘r%)
n=0
—1 Bhw
= e3P —phoyr _ € 27
= e732 Z(e ) =

n

1
2sinh(1 fhw)

Since the number of modes is 3N the canonical partition
function is

i e*ﬁﬁwE Z (nJ

oo oo
z= %5
n1=0n2=0 nan=1
3N oo
= IS e =
7j=1n=0

()]

The heat capacity is

0E 9 0 ) dlnZ
= _=__ 2 T2
Cv or ~ “ar o "% = a7 (’“B aT )
2
— kT O Tz = 3Nk B2
or sinh”(Tg/2T)
C,
3Nk

Em stein

Debye’s model
To get the exact solution we should evaluate the partition
function

Tre B g, M R)a g +D)

o0

= 2

{rg. =0

e_ﬁ st hws(k)(nks—i—%) y

which in turn would require the knowledge of of the
disperions w,(k). In practice we have to be satisfied with,
normally quite realistic, Debye’s model:

e At low temperatures only the contribution of the low
energetic phonons is prominent, so

— we take into account only the acoustic modes: 2
tranversal and 1 longitudinal.

— we take only the phonons associated with small
k, so we can employ the linear dispersions

wi(k) =
wi(k) =

Clk
Ctk.
e We cut the spectra at the Debye frequency
kTp
h )

where Tp is the corresponding Debye temperature.

wp =

In each mode j the density of states is

3
dN; = (25) dmk?dk = —

— w
P 272 c?

2dw.

Thus the total density is

2 1
dN = L (—3 + —3> wzdw.

2
22 \¢; ¢

Since the total number of modes is

1
3N = dN—— I I
/ 62 (t+cl3>wD

we get as the Debye temperature

s _N o2 1\

and correspondingly as the state density

N
9—3 wldw

dN(w) =
wWp

(w < wp).

The canonical partition function is

i i i eiBsthws(k)(nks_’_%)

ni1 =0 TL2=0 nanN =0
e_% Bhw, (k)

a lkg 1 — e—Bhws(k)’

Z

from which we can derive as the free energy

1
F = Z 5 hws(k) +kBTZ]n [1 _ e—Bhws(k)
ks ks
—_—
0-point energy
or
F =Fy+ kBT — / dw w? ln e—ﬁﬁw) _
Since 5=~ 5r and Cv = gT? isCy =-T 5TI;, S0 we
have .
Cy = 3Nkpfp ( D)
T
Here
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fD(l‘):%/;dym



is the so called Debye function.
Typical Debye temperatures

Tp
Au 170
Cu 315
Fe 420
Cr 460
B 1250
C (diamond) 1860

Note The higher T the stiffer, harder crystal.
Behaviour of Cy:

T — o0

Since

3 z 2 _
fp(ﬂﬂ)wj%?/0 dyy” =1,

we have
Cy — 3Nkg,

or we end up with the Dulong-Petit heat capacity.
T-=0
Since

> y46y constant

y(ey—l)z_ 3

we get

127 T\°
Cv(T) — vakio X T3 = o Nkp | — .
) Tp

C,

Debye

0T
“electronic
“A contribution

A)
aT?

Diatomic ideal gas

We classify molecules of two atoms to

e homopolar molecules (identical atoms), e.g. Ha, No,
O,, ..., and

e heteropolar molecules (different atoms), e.g. CO,
NO, H(C], ...

When the density of the gas is low the intermolecular
interactions are minimal and the ideal gas equation of
state holds. The internal degrees of freedom, however,
change the thermal properties (like Cy).

When we suppose that the modes corresponding to the
internal degrees of freedom are independent on each

other, we can write the total Hamiltonian of the molecule
as the sum

H ~ Htr + Hrot + Hvibr + Hel + Hydin‘

Here
2

ot — r _ kinetic energy
2m

m = mass of molecule
L2

CTdn rotational energy

L = angular momentum

Hrot —

I = moment of inertia

mimso
I= izl = — ?
; it mi + ma

Ezample Hs-molecule
d=0.75A
L=nIl(1+1),

h2
21kp
eigenvalues

h2

— 1

5] I(1+1)
are (21 + 1)-fold degenerated

1=0,1,2,...

= 85.41K

) 1
HY =, (A + §) = vibration energy

The vibrational degrees of
freedom of the separation d of
nuclei correspond at small
amplitudes to a linear harmonic
oscillator.

n=ala=0,1,2,...

Each energy level is non
degenerate

H® = electronic energies

e jumping of electrons from an
orbital to another

e ionization
e energies J1eV ~ kpl0‘K

e in normal circumstances
these degrees of freedom are
frozen and can be neglected.

energies corresponding to
nucleonic degrees of freedom

In normal circumstances only the
nuclear spins are interesting. The
spin degeneracy is

9y = (2L +1)(2: + 1),

where I; and I, are the spins of
the nuclei

Hnucl



Energy terms do not couple appreciably, i.e. the energy
E; of the state i is

Ei ~ Et.r + Erot + Evibr:

so the partition sum of one molecule is

Z, = Ziigy(2l+1)x

p l:O n:O
o B BB 7 (1)~ Bhw, (n+})
— Ztr Zrot Zvibrznucl,
i.e. the state sum can be factorized.
Above
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zrd = g, = (21 + 1)(2L + 1).

Approximatively (neglecting the multiple occupation of
states) the state sum of N molecules is
1
ZN = ﬁ Z{V7
where 1/N! takes care of the identity of molecules. We
associate this factor with the tranlational sum.
The free energy
F = —kBT In ZN

can be divided into terms

[1
F" = —kpTln | (Z'“)N]
- 3 N
1 2mmkpT \ 2
= —kTIn mV (T)
i \% 3 3. 2mm

Frot — —NkgTln {2(21 + 1)e%l(l+1)}

=0

. T,
FYir  —  NEkgTln [zsinh ﬁ]

Fnucl = —NkBTlngy.

The internal energy is

F+TS=F—T6—F

oT
o (F
= T’ (=
o (1)
so the internal energy corresponding to tranlational
degrees of freedom is

tr
Utr:_TZQ (F ) :NngT

U

or \ T
and
tr 3
C = 5 NkB

so we end up with the ideal gas result.
Since only F** depends on volume V the pressure is

_ OF _ F™ _ NkgT
P="5v ="V ~ v >

i.e. we end up with the ideal gas equation of state

pV = NkBT

Rotation
Typical rotational temperatures

Gas | T,

H> | 85.4

N. | 29

NO | 24

HCL | 15.2

Cly | 0.36
We see that T, <« the room temperature.
T<LT,
Now

oo
Zrot _ Z(Ql + l)e—TT’"l(l-H) ~ 1+ 3e2 %7
=0
so the corresponding free energy is
™'~ —3NkpTe >
and the internal energy

6 Frot
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vt = TaT ( T
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) ~ 6NkpT,e “T.

Rotations contribute to the heat capacity like

T.\° _,z
rot r 27 5
CV ~ 12NkB (—T ) € T T—>00-

T>T,
Now
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so the free energy is

T
F™' ~ —NkgTIn o

T

and the internal energy
Umt ~ Nk‘BT.
The contribution to the heat capacity is
1
C*' ~ Nkp = fr°t§ Nkg,

or in the limit 7 > T, there are fr' = 2 rotational
degrees of freedom.
Precisely:

Vibration
Typical vibrational temperatures:
Gas | T,
H, | 6100
Ny | 3340
NO | 2690
02 | 2230
HCl | 4140
We see that T, > the room temperature.
T Ty

The free energy is

F™ = NkpTln [e3F (1 - = %)]
1 ,
~ 3 NkgT, — NkgTe™ T,
SO 5
CY* ~ Nkp (%) e
T>T,

Now the free energy is
FV® ~ NkgT'ln T?
and the internal energy correspondingly
UV ~ NkgT,
so the heat capacity is
CVPT o Nkp.

We see that in the limit T > T, two degrees of freedom
are associated with vibrations like always with harmonic
oscillators (E = (T) + (V) = 2(T)).
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Rotation of homopolar molecules
The symmetries due to the identity of nuclei must be
taken into account.
Example Hy-gas:
The nuclear spins are
1

I1:.12:§,

so the total spin of the molecule is
I1=0,1.

We consider these two cases:

0 T
I=1 I=0
I,=-1,0,1 I,=0
triplet singlet
orthohydrogen parahydrogen
spin spin wave
wavefunctions function
symmetric: antisymmetric:
1) = [
10) = T+ 00y =2 (1) - I1)
1) = [
Space wave Space wave
function function
antisymmetric: symmetric:
(-1)'=-1 (-1)l =1

The corresponding partition functions are

Zortho = . (2+1)e” FUHD
1=1,3,5,...

Zowa = 3. (2+De 71D
1=0,24,...

and the partition function associated with rotation is
zZret = 3Zortho + Zpara-

When T > T, collisions cause conversions between ortho
and para states so the system is in an equilibrium. In
addition Zorto & Zpara, s0 all 4 spin states are equally
probable.

When TXT, the gas may remain as an metastable mizture
of ortho and para hydrogens. In the mixture the ratio of
the spin populations is 3 : 1. Then we must use the

partion sum
N

. 3N N
Z}‘\(f) = Zo;'lto P%’«Ta'
The internal energy is now
3 1
Urot = Uorto _ ypara
4 + 4
and the heat capacity correspondingly

3 1
Crot - = Corto - C«para_
4 + 4



