Classical phase space

Phase space and probability density
We consider a system of N particles in a d-dimensional
space. Canonical coordinates and momenta
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determine exactly the microscopic state of the system.
The phase space is the 2dN-dimensional space {(p,q)},
whose every point P = (p, q) corresponds to a possible
state of the system.

A trajectory is such a curve in the phase space along
which the point P(t) as a function of time moves.
Trajectories are determined by the classical equations of
motion
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= H(q,p,t) = H(P,t)

is the Hamiltonian function of the system.

The trajectory is stationary, if H does not depend on
time: trajectories starting from the same initial point P
are identical.

Let F = F(q,p,t) be a property of the system. Now
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where {F, G} stands for Poisson brackets
OF 0G 0G OF
F = — - .
{ ’G} Z (3% Op; Oqg; 51%)
We define the volume measure of the phase space
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Here h = 6.62608 - 10~34Js is the Planck constant.
Note [dgdp] = Js, so dI' is dimensionless.

Note Ao’ =1 corresponds to the smallest possible
volume element of the phase space where a point
representing the system can be localized in accordance

with the uncertainty principle. The volume AT = [ dT is

then roughly equal to the number of quantum states in
the part of the space under consideration.
The ensemble or statistical set consists, at a given

moment, of all those phase space points which correspond

to identical macroscopic systems.
Corresponding to a macro state of the system there are
thus a set of micro states which belong to the ensemble

with the probability p(P) dT. p(P) is the probability
density which satisfies the condition
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The statistical average, or the ensemble expectation
value, of a measurable quantity f = f(P) is
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We associate every phase space point with the velocity
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The probability current is then Vp. The probability
weight of an element T'y evolves then like
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Because
Vp-dS = V- (Vp)dr,
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we get in the limit 'y — O the continuity equation
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so we end up with the incompressibility condition
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From the continuity equation we get then
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When we employ the convective time derivative
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the continuity equation can be written in the form known

as the Liouville theorem
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The points in the phase space move like an incompressible

fluid which carries with it the constant probability
describing the ensemble.

(P(1),t) = 0.

Flow in phase space
The energy surface I'g is the manifold determined by the
equation

H(q,p) = E.

Since the energy is a constant of motion every phase
point P*(t) moves on a certain energy surface I'g;.
The expectation value of the energy of the system

E = (H) :/der

is also a constant of motion.
The volume of the energy surface is

Yp = /dFE = /dm(H(P) - E).

The volume of the phase space is

Let us consider the element AT'g of an energy surface.

Non ergodic flow: In the course of time the element
ATl'g traverses only a part of the energy surface I'g.

Ergodic flow: Almost all points of the surface I'g are
sometimes arbitrarily close to any point in AT'g.
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The flow is ergodic if Vf(P), f(P) ”smooth enough”,
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holds. Here f is the time average
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and (f)g the energy surface expectation value
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We define the microcanonical ensemble so that its density
distribution is
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= - (H(P) - B).
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Every point of the energy surface belongs with the same
probability to the microcanonical ensemble.
The microcacnonical ensembel is stationary, i.e. 85;;3 =0
and the expectation values over it temporal constants.

The mizing flow is such an ergodic flow where the points
of an energy surface element dI'g disperse in the course of
time all over the energy surface.

If pg(P,t) is an arbitrary non stationary density
distribution at the moment ¢ = tg, then
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i.e. the density describing an arbitrary (non equilibrium)
state evolves towards a microcanonical ensemble.

Microcanonical ensemble and entropy
If the total energy of a macroscopic system is known
exactly its equilibrium state can be described by a
microcanonical ensemble. The corresponding probability
density is

p(P) = 5 8(H(P) - E).
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For a convenience we allow the energy to have some
”tolerance” and define
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Here the normalization constant
ZE AE = /dF 0(E + AE — H(P))¢(H(P) — E)

is the microcanonical state sum or partition function.
Zg,AE is the number of states contained in the energy
slice E < H < E + AEFE (see the volume measure of the
phase space). In the microcanonical ensemble the
probability is distributed evenly in every allowed part of
the phase space.

Entropy
We define the Gibbs entropy as

S = —kB/de(P) In p(P).

Let AT; the volume of the phase space element i and p;
the average probability density in 4. The state of the
system is, with the probability
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in the element 7 and
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We chooce the sizes of all elements to be smallest
possible, i.e. AT'; = 1. Then
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since In AT"; = 0.
If p is smooth in the range AT' = W we have
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We end up with the Boltzmann entropy
S = kB In W.

Here W is the thermodynamic probability: the number of
all those states that correspond to the macroscopical
properties of the system.

One can show that the entropy is additive, i.e. if the
system is composed of two partial systems 1 and 2 its

entropy is
Sl+2 =5 + 5.

If we require that the entropy has a maximum under the
condition
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The maximum principle of the entropy leads thus to the
microcanonical distribution.

Entropy and disorder

The maximum of entropy
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Every microscopic state which satisfies

E< H<E+AE,

is present with the same probability, i.e. there is the
complete lack of information
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Disorder is at maximum.



