Classical phase space

Phase space and probability density We consider a system of N particles in a d-dimensional space. Canonical coordinates and momenta

$$q = (q_1, \dots, q_{dN})$$
$$p = (p_1, \dots, p_{dN})$$

determine exactly the microscopic state of the system. The *phase space* is the 2dN-dimensional space $\{(p,q)\}$, whose every point P=(p,q) corresponds to a possible state of the system.

A trajectory is such a curve in the phase space along which the point P(t) as a function of time moves. Trajectories are determined by the classical equations of motion

$$\frac{dq_i}{dt} = \frac{\partial H}{\partial p_i}
\frac{dp_i}{dt} = -\frac{\partial H}{\partial q_i},$$

where

$$H = H(q_1, \dots, q_{dN}, p_1, \dots, p_{dN}, t)$$

= $H(q, p, t) = H(P, t)$

is the Hamiltonian function of the system.

The trajectory is stationary, if H does not depend on time: trajectories starting from the same initial point P are identical.

Let F = F(q, p, t) be a property of the system. Now

$$\frac{dF}{dt} = \frac{\partial F}{\partial t} + \{F, H\},\,$$

where $\{F,G\}$ stands for Poisson brackets

$$\{F,G\} \equiv \sum_{i} \left(\frac{\partial F}{\partial q_{i}} \frac{\partial G}{\partial p_{i}} - \frac{\partial G}{\partial q_{i}} \frac{\partial F}{\partial p_{i}} \right).$$

We define the volume measure of the phase space

$$d\Gamma = \prod_{i=1}^{dN} \frac{dq_i dp_i}{h} = h^{-dN} dq_1 \cdots dq_{dN} dp_1 \cdots dp_{dN}.$$

Here $h = 6.62608 \cdot 10^{-34} \text{Js}$ is the Planck constant.

Note [dq dp] = Js, so $d\Gamma$ is dimensionless.

Note $\Delta_0\Gamma=1$ corresponds to the smallest possible volume element of the phase space where a point representing the system can be localized in accordance with the uncertainty principle. The volume $\Delta\Gamma=\int d\Gamma$ is then roughly equal to the number of quantum states in the part of the space under consideration.

The *ensemble* or *statistical set* consists, at a given moment, of all those phase space points which correspond to identical macroscopic systems.

Corresponding to a macro state of the system there are thus a set of micro states which belong to the ensemble

with the probability $\rho(P) d\Gamma$. $\rho(P)$ is the *probability* density which satisfies the condition

$$\int d\Gamma \, \rho(P) = 1.$$

The statistical average, or the ensemble expectation value, of a measurable quantity f = f(P) is

$$\langle f \rangle = \int d\Gamma f(P) \rho(P).$$

We associate every phase space point with the velocity field

$$V = (\dot{q}, \dot{p}) = \left(\frac{\partial H}{\partial p}, -\frac{\partial H}{\partial q}\right).$$

The probability current is then $V\rho$. The probability weight of an element Γ_0 evolves then like

$$rac{\partial}{\partial t} \int_{\Gamma_0}
ho \, d\Gamma = - \int_{\partial \Gamma_0} m{V}
ho \cdot dm{S}.$$

Because

$$\int_{\partial \Gamma_0} \mathbf{V} \rho \cdot d\mathbf{S} = \int_{\Gamma_0} \nabla \cdot (\mathbf{V} \rho) \, d\Gamma,$$

we get in the limit $\Gamma_0 \to 0$ the continuity equation

$$\frac{\partial}{\partial t} \rho + \nabla \cdot (\mathbf{V}\rho) = 0.$$

According to the equations of motion

$$\dot{q}_i = \frac{\partial H}{\partial p_i}$$

$$\dot{p}_i = -\frac{\partial H}{\partial q_i}$$

we have

$$\frac{\partial \dot{q}_i}{\partial q_i} + \frac{\partial \dot{p}_i}{\partial p_i} = 0,$$

so we end up with the incompressibility condition

$$\nabla \cdot \mathbf{V} = \sum_{\cdot} \left[\frac{\partial \dot{q}_i}{\partial q_i} + \frac{\partial \dot{p}_i}{\partial p_i} \right] = 0.$$

From the continuity equation we get then

$$0 = \frac{\partial \rho}{\partial t} + \nabla \cdot (\mathbf{V}\rho)$$
$$= \frac{\partial \rho}{\partial t} + \rho \nabla \cdot \mathbf{V} + \mathbf{V} \cdot \nabla \rho$$
$$= \frac{\partial \rho}{\partial t} + \mathbf{V} \cdot \nabla \rho.$$

When we employ the convective time derivative

$$\frac{d}{dt} = \frac{\partial}{\partial t} + \mathbf{V} \cdot \nabla
= \frac{\partial}{\partial t} + \sum_{i} \left(\dot{q}_{i} \frac{\partial}{\partial q_{i}} + \dot{p}_{i} \frac{\partial}{\partial p_{i}} \right),$$

the continuity equation can be written in the form known as the $Liouville\ theorem$

$$\frac{d}{dt}\rho(P(t),t) = 0.$$

The points in the phase space move like an incompressible fluid which carries with it the constant probability describing the ensemble.

Flow in phase space

The energy surface Γ_E is the manifold determined by the equation

$$H(q,p) = E.$$

Since the energy is a constant of motion every phase point $P^i(t)$ moves on a certain energy surface Γ_{Ei} . The expectation value of the energy of the system

$$E = \langle H \rangle = \int d\Gamma \, H \rho$$

is also a constant of motion.

The volume of the energy surface is

$$\Sigma_E = \int d\Gamma_E = \int d\Gamma \, \delta(H(P) - E).$$

The volume of the phase space is

$$\int d\Gamma = \int_{-\infty}^{\infty} dE \, \Sigma_E.$$

Let us consider the element $\Delta\Gamma_E$ of an energy surface.

Non ergodic flow: In the course of time the element $\Delta\Gamma_E$ traverses only a part of the energy surface Γ_E .

Ergodic flow: Almost all points of the surface Γ_E are sometimes arbitrarily close to any point in $\Delta\Gamma_E$.

 \Leftrightarrow

The flow is ergodic if $\forall f(P), f(P)$ "smooth enough",

$$\bar{f} = \langle f \rangle_F$$

holds. Here \bar{f} is the time average

$$\bar{f} = \lim_{T \to \infty} \frac{1}{T} \int_0^T dt \, f(P(t))$$

and $\langle f \rangle_E$ the energy surface expectation value

$$\langle f \rangle_E = \frac{1}{\sum_E} \int d\Gamma_E f(P).$$

We define the *microcanonical ensemble* so that its density distribution is

$$\rho_E(P) = \frac{1}{\Sigma_E} \delta(H(P) - E).$$

Every point of the energy surface belongs with the same probability to the microcanonical ensemble.

The microcacnonical ensembel is stationary, i.e. $\frac{\partial \rho_E}{\partial t} = 0$ and the expectation values over it temporal constants.

The mixing flow is such an ergodic flow where the points of an energy surface element $d\Gamma_E$ disperse in the course of time all over the energy surface.

If $\hat{\rho}_E(P, t)$ is an arbitrary non stationary density distribution at the moment $t = t_0$, then

$$\lim_{t \to \infty} \hat{\rho}_E(P, t) = \frac{1}{\sum_E} \delta(H(P) - E) = \rho_E(P)$$

and

$$\lim_{t \to \infty} \langle f \rangle = \lim_{t \to \infty} \int d\Gamma \, \hat{\rho}_E(P, t) f(P)$$
$$= \int d\Gamma \, f(P) \rho_E(P)$$

i.e. the density describing an arbitrary (non equilibrium) state evolves towards a microcanonical ensemble.

Microcanonical ensemble and entropy

If the total energy of a macroscopic system is known exactly its equilibrium state can be described by a microcanonical ensemble. The corresponding probability density is

$$ho_E(P) = rac{1}{\Sigma_E} \delta(H(P) - E).$$

For a convenience we allow the energy to have some "tolerance" and define

$$\rho_{E,\Delta E}(P) = \frac{1}{Z_{E,\Delta E}} \theta(E + \Delta E - H(P)) \theta(H(P) - E).$$

Here the normalization constant

$$Z_{E,\Delta E} = \int d\Gamma \, \theta(E + \Delta E - H(P)) \theta(H(P) - E)$$

is the microcanonical state sum or partition function. $Z_{E,\Delta E}$ is the number of states contained in the energy slice $E < H < E + \Delta E$ (see the volume measure of the phase space). In the microcanonical ensemble the probability is distributed evenly in every allowed part of the phase space.

Entropy

We define the $Gibbs\ entropy$ as

$$S = -k_B \int d\Gamma \, \rho(P) \ln \rho(P).$$

Let $\Delta\Gamma_i$ the volume of the phase space element i and ρ_i the average probability density in i. The state of the system is, with the probability

$$p_i = \rho_i \, \Delta \Gamma_i$$

in the element i and

$$\sum p_i = 1.$$

We choose the sizes of all elements to be smallest possible, i.e. $\Delta\Gamma_i = 1$. Then

$$\begin{split} S &= -k_B \sum_i \Delta \Gamma_i \rho_i \ln \rho_i = -k_B \sum_i \rho_i \Delta \Gamma_i \ln \rho_i \Delta \Gamma_i \\ &= -k_B \sum_i p_i \ln p_i, \end{split}$$

since $\ln \Delta \Gamma_i = 0$.

If ρ is smooth in the range $\Delta\Gamma = W$ we have

$$\rho = \frac{1}{W},$$

so that

$$S = -k_B \frac{1}{W} \ln \frac{1}{W} \int d\Gamma.$$

We end up with the Boltzmann entropy

$$S = k_B \ln W$$
.

Here W is the $thermodynamic\ probability$: the number of all those states that correspond to the macroscopical properties of the system.

One can show that the entropy is *additive*, i.e. if the system is composed of two partial systems 1 and 2 its entropy is

$$S_{1+2} = S_1 + S_2.$$

If we require that the entropy has a maximum under the condition

$$\int d\Gamma \, \rho(P) = 1,$$

 ρ takes the form

$$\rho(P) = \rho_0 \ \forall P \in \Gamma_E.$$

The maximum principle of the entropy leads thus to the microcanonical distribution.

Entropy and disorder

The maximum of entropy

 \Leftrightarrow

Microcanonical ensemble

 \Leftrightarrow

Every microscopic state which satisfies

$$E < H < E + \Delta E$$
,

is present with the same probability, i.e. there is the complete lack of information

 \Leftrightarrow

Disorder is at maximum.