Critical phenomena
In a second order phase transition the system normally
goes from a higher temperature phase to a lower
temperature phase with less symmetry. We say that a
symmetry is broken spontaneously. For example,
ferromagnetic material will get polarized below a certain
critical temperature. The spin rotation symmetry is
broken. The amount of the symmetry break is described
by an order parameter, which is usually assigned to the
expectation value of some observable of the system. In
the ferromagnetic system a suitable order parameter is
the magnetization m. In the symmetric phase m = 0 and
in the ordered, i.e. symmetry breaking phase m # 0.
Let the order parameter be m and h the external field
coupling to the corresponding observable. We consider
the system close to the critical point 7' = T,. When we
denote

T=T-T,

the critical point is at origin of the (7, h)-plane.

Since the critical point is a singular point of
thermodynamic potentials we divide them into regular
and singular parts. For example, we write

F(Tam) = FO(Ta m) + Fs(Tam)

G(T, h) = Go(T, h’) + GS(T7 h) =F — hm,
where the functions Fy and Gy are regular at the vicinity
of the point (7 = 0, h = 0) whereas the functions F; and
G are singular there. Their differentials are

dF(T,m) = —SdT + hdm
dG(T,h) = —-SdT —mdh.

Critical exponents

Close to the critical point the singular parts are (with
great accuracy) proprtional to some powers of the
thermodynamical quantities 7 and h. The critical
exponents or the critical indeces are defined as follows:

e o, a’ determine the singular part of the specific heat

so that
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_ Kt~ when T' > T,
N K'(—7)~®, when T < T,.

In practice we have o' = a.
e (3 tells how the order parameter behaves:

_ |0 when T > T,
m(T) = { K (-7)?, whenT < T..

e 7,7 are related with the susceptivity:
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B { Kr7, when T > T,

K'(—7)™"", when T < T..
Within the experimental accuracy ' = .

e ¢ tells how the order parameter depends on the
external field h at the critical temperature T' = T,:

m(T., h) = K h/°.

e v determines the dependence of the correlation
length on the temperature,

E=K|r|7".

The index v is not actually a thermodynamic
quantity since it is related with the microscopical
parameter £.

Scaling theory

A scalable equation is such that it remains invariant
under the scale transformations if the units of
measurements are selected by scaling them properly. As
an example we consider Navier-Stokes’ equation of flow:
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where v is the velocity, p the density, p the pressure and f
the force. The coefficient
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is the kinematic viscosity and 7 the viscosity. Let T, L, V
and M be the dimensional units of the time, length,
velocity and mass. With the help of the corresponding
measures t', 7', v’ and m' (for example the mass is
m = m'M) the Navier-Stokes equation takes the form
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The parameter R is the dimensionless Reynolds number
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which characterizes the flow: if R<10...100, the flow is
usually laminar and if RZ10...100, it’s turbulent.
Looking at the Navier-Stokes equation written using the
measurement numbers we see that the behaviour of the
system is dictated by the Reynolds number. If one can go
from a system S to a system S; by scaling the measuring
units so that the Reynolds number remains fixed, the
equation describing the system as well as its solution
remain also invariant. We say that the systems S ja S;
are similar.

As a concrete example we consider two systems which are
composed of same material, i.e.

p=pirjav=uv.
We scale the linear measure by the factor s i.e.

L1 = sL.



If we want the systems to be similar the Reynolds number
must stay invarinat. For example
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so the scaling factor of the time s7 must be

ST = 82.
Let A and A; be some dimensional units of measure
corresponding to similar systems S and S;. It turns out
that all scaling laws are of the form

— o a
A]_ =S A,
where is d, is a rational number.

Scaling hypothesis
In dense matter (liquid, solid, ...)

e the microscopical length scale is determined by the
distance between atoms or molecules.

e when macroscopic properties are considered the
microscopic structure is invisible.

e the only macroscopically essential parameter related
to microscopical properties is the correlation length
&, because in the vicinity of the critical point it grows
macroscopically large.

We can thus assume that when we approach the critical
point the classical similarity will hold:

e Consider two systems of same material with
correlation lengths £ and &;.

e The correlation length tells the scale of the
fluctuations, i.e. the scale of structure of the matter
(provided that we cannot observe the atomic
structure).

e When the systems are observed using such
magnifications that £ and & seem to be of equal
length (and possibly adjusting sampling frequencies)
no differences between the systems can be found.

Since the correlation length at the critical point is infinite
all sizes of fluctuations related to the order parameter are
present. Except the atomic scale, there is no natural
measure of length in the system. Thus the system looks
similar no matter what scale is used, the system is self
similar. The self similarity assumption is formulated
mathematically as the scaling hypothesis:

e The singular parts of all thermodynamic potentials
scale as exponential functions of the correlation
length £ only.

e The quantity A behaves in the vicinity of the critical
point like
Aocg,

where d 4 is the scaling dimension of A.

The scaling dimension of the correlation length is then
obviously d¢ = —1. Further, we see that the scaling
dimension of the quatity A*BY --- is

d(AmBy...) =xds+ydp+---.
Because the critical index v was defined so that
o 7|,
the scaling dimension of the temperature is
d, =vL

The scaling dimensions of the most important quantities
are

o Correlation length £: We saw above that

de = —1.
o Temperature 7: We had

1
d, =

;.
e Length £: Since the correlation length determines the
length scale of the system £ scales like £ i.e.
dy = —1.
o Wave vector q: The wave vector is inversely
proportional to the length so
d, =1.

e Order parameter m: The index 8 was defined so that
m o (—7)?, so

Ay = pd, = 2.
14

o Free energy G: Scale transformation do not affect the
free energy of the system, so

da =0.

o Free energy per volume element g: Since g = G/V,
we have
dg =dg —dy = —ddy = d,

when d is the spatial dimension.

e Specific heat c: Since the specific heat (density) is

%g
CR _Tc ﬁ,
the scaling dimension d. satisfies the condition

2
de=dy—2d, =d—~.

Thus we have for the specific heat

c o 6(2/1/)—(1 o |7_|d1/—2



and, according to the definition of the critical index
a?
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Hence the critical indeces are related via the scaling

law
a=2-—uvd.

e Field h: In an equilibrium the order parameter m is

_%y
oh’

S0
dm =d—dp.

For the field A we thus have

dh:d—dmzd—g.
v

The suceptivity obeys according to the definition of the
index v the relation

om
= — -7
SO
d — d = —d, .

Comparing the dimension obtained from this for d; with
our earlier result we end up with the scaling law

v =vd — 20.

Further, the index § was defined so that at the critical
temperature

m o< h'/9.
Then we have p
dm = Fha

from which, using our earlier result, we get the scaling law

vd
0=— —1.
B

The hard to measure index v, which is related to the
microscopical correlation length, can be eliminated from

the three scaling laws derived above. We are left with
scaling laws relating thermodynamic indeces:

a+28+y =
p-1) = .

Note Although the scaling laws derived above are based
on phenomenological arguments they are valid within
experimental accuracy.

Widom scaling
We consider the Gibbs function per primitive cell (or
particle)

g(Ta h) =90 (Ta h) + gs(Ta h‘)a

where we have again separated the regular and singular
parts from eachother at the singular point (7 = 0,h = 0).
Its differential is

dg = —sdt — mdh,

when s = S/N is the entropy per primitive cell (or
particle). Since the order parameter m is zero at
temperatures above the critical point the critical
exponents related to it must come from the singular
function gs.

The functio f is a generalized homogenous function if it
satisfies the condition

f()\alxl,)\a2$2, .- ) = )\f(xl,:ll‘g, - )

According to Widom’s hypothesis the function gs; behaves
in the vicinity of the critical point like a generalized
homogenous function, i.e. it scales like

9s(AP1,\h) = Ags(T, h),

when A > 0 and p and ¢ are system independent
exponents.

Because the scaling equation holds for all positive values
of X it holds when A = A='/¢, in which case A\%h = 1.
Thus we can write the scaling hypothesis as

wigs (1)
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gs(7, h)

Here we have defined

P(z) = gs(z, 1).
The critical indeces can be obtained as follows

e (3. Take the derivative of the scaling equation
9s(AP1, A%h) = Ags(T, h),

with respect to the field A and recall that the order
parameter is

0gs(1, h
m(r,h) = - 2240

so we have the scaling condition
AIm(APT, ANh) = Am(T, h). (%)

Since the order parameter is supposed to be m # 0,
we have 7 < 0. Then we can choose A so that
NP1 = —1. Setting h = 0 we get

m(,0) = (=1)~9/Pm(-1,0).
According to the definition we have
m(Ta 0) X (_T)ﬂ7

SO



e §. We set in the equation (¥) 7 =0 and A? = 1/h, so
m(0,h) = K9 1m(0,1).

According to the definition m(0, h) o< h!/9, so

e 7v,v". According to the definition the susceptivity is

Om(t, h)

x(1,h) = “on

which close to the critical point behaves like
T 7,

rE { (-1,

Differentiating (*) with respect to the field h we get

when 7> 0
when 7 < 0.

N9 (NP7, ATh) = Ax(T, h).
Setting h = 0 and AP = +1 we have
X(,0) = [~ /Py(£1,0).
From this we can read for v and +'

P 2q -1
p
e «,a’. The specific heat is
chp X Py
h 5 -
or?
Differentiating the scaling equation
9s(APT, XTh) = Ags(7, h)
twice with respect to 7 we get

A% ey, (AP, Ah) = Acp (T, h).

We set h = 0 and AP7 = £1 and compare the result
with the definitions of @ and «':

o o T, kun 7> 0

0 (=), kun T < 0.
We see that 1
a=a =2--.
p

It is easy to verify that the Widom scaling hypothesis
leads to the scaling laws

a+28+y =
pe-1) = ~.

Kadanoff scaling theory
Unlike the Widom scaling hypothesis the method

developed by Kadanoff (1966) is based on the microscopic

properties of matter.
Outlines of Kadanoffs method:

e Combine the original microscopical state variables
blockwise to block variables.

e Determine the efective interactions between the
blocks. This coarsing of the system is called the block
transform.

e The block transforms form a semigroup, so called
renormalization group. One can perform transforms
sequentially.

e Because in a system at the critical point there is no
natural length scale the transformed systems look
copies of eachother. Thus the critical point
corresponds to a fized point of the transformations.

We apply the method to the d-dimensional Ising spin
system.

Block transform

We denote by i, j, ... the origininal lattice points and the
blocks obtained by combining them by indeces I, J,....
The block spin ¢ of the block I is defined so that

O'II: E ;.

If we end up with the blocks I by scaling the length
measure by the factor L, each block has L? spins.
Because in the Ising model each spin can get the values
o; = £1 the block spin can get the values

oy =—L% -L%+2,..., L%

i.e. alltogether L? + 1 different values.
Let H be the original Hamiltonian. We denote

H[UZ] = ﬁH = —KZO’,'U]' - hZai.
(i4) i
The state sum is
Z=e¢9=Tre Mol = Z e~ Mol
{oi}

where G = G, G is the Gibbs function. We divide the
trace summation into two parts
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Here we have defined
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As can be seen from the definition

H[UII] =In TI‘{J'I}G_’H[U"]

the Hamilton block function H[o}] is actually the reduced
free energy. Thus it can be written as

H[UII] = [0'1;] (o'} - TS'{J’I} )

where H][o;] o is the expectation value of the energy
o

(the internal energy) evaluated in the block configuration
{o7}. Hence the Hamiltonian block function contains the
internal entropy related to the internal variables of the
blocks.

Close to the critical point, due to the scale invariance, we
assume the reduced free energy to take approximately the
same form as the original Hamiltonian. To achieve this
we scale the range of the block spins so that

U} =Zzoy,

where oy = +1. Because the maximum of the block spin
is L? we must have z < L¢.

Critical exponents
According to Kadanoff effectively the most important
values of the block variable are +z. We denote

Hilor] = Hlzo1].

We let the new Hamiltonian Hy, to be of the same form
as the original H:

Hilor] = - K¢ Z oroy — hLZ(J'I.

(IJ) I

The parameters K;, and hy depend now on the scale L.
Let the values of the parameters at the critical point to be

K = K.
h = h.=0.

Since at the critical point nothing changes while scaling
we must also have

Ky,
hy =

K.
he = 0.

We consider the neighbourhood of the critical point. We
suppose that h # 0, so also the corresponding scaled field
satisfies hr # 0. We write the original coupling constant
as

K=K.+AK

and the corresponding scaled coupling constant as
K; =K.+ AKjy.

We now vary the scale factor L by a (small) amount §L.
The relative variation of the scale is then L/L. we can
assume (as a good approximation) that the relative

variations of the scaled parameters are proportional to
the relative variation of the scale, i.e.

AK], _ oL
AK, 'L
ohp, oL
E ) T

where x and y are constants.
When the change in the ratio is infinitesimal we get the
differential equations

61nAKL

OlnL
alnhL

OlnL’

y =
which after integration give

Ky
hy =

K.+ L*(K — K,.)
LYh.
To obtain the same energy from the original and scaled

Hamiltonians the coupling to the external field must
satisfy the condition

hZai = hU'I = hzaI = hLUI,
iel
so the field scales like h;, = zh. We see that
z=LY and y <d.

The same reasoning allows us to assume that the relative
deviation of the temperature from the critical point,
_T-T.

=7

T

behaves like the relative deviation of the coupling
constant K from the critical value, i.e.

L = LZT.
Thus the Gibbs function per spin unit scales like
g(TL7 hL) = g(LzTJ Lyh) = Ldg(TJ h)7

where the factor L? is due to the fact that the new block
contains L% old spins. Writing

pd
= qd

we end up with the Widom scaling.

Renormalization group
Let us suppose that the Hamiltonian H depends on the
parameters

p=(p1,p2;- - ),
For example y = (K, h), as above. Block transforms are
now mappings in the parameter space

B pr.



Let Ry be the operator corresponding to the block
transform, i.e.
p— pr = Rpp.

Since the block transform is a change in the scale we
must have

RiR, =Ry .

Furthermore, it does not matter in which order the scale
transforms are performed:

R.R, = R, Ry.

In the block transform we loose information, for example
the detailed knowledge of the values of the original spin
variables. Thus it is impossible to return to the original
system by scaling: the operation R has no inverse
transformation among the operations {Rr}. We see that
the operations

R=A{Rp}

form a commutative semigroup which is called the
renormalization group.
A point p* which satisfies the condition

= Ru* VReER,

is called a fized point. A system corresponding to the
parameter values p* is at the critical point since any
transformation of that systems results an exactly identical
system. The set of those points that after sequential
block transforms lead to the fixed point pu* is called the
critical surface. If the system is on the critical surface,
but not at the critical point, it is at a critical point of the
phase transition. However, one can still observe it using
the scale where microscopical details are visible.



