Equilibrium distributions

Canonical ensembles

We maximise the entropy under the conditions
(H) =
I =

Tr pH = E = constant
Trp=1.

So, we require that
8(S — X{H) - XN (I)) =0,
where A are X' are Lagrange multipliers. We get

0Tr (—kpplnp — A\pH — X p) =
Tr(—kplnp—kg —AH — XNI)ép=0.

Since dp is an arbitrary variation, we end up with the

canonical or Gibbs distribution
1
= —_ e PH
p VA € ’

where Z is the canonical sum over states (or partition
function)

Z =Tre PH = Ze_BE" = /dEw(E)e_BE.
n

Note In the canonical ensemble the number of particles is
constant, i.e.
Z =Z({p,V,N,...).

The probability for the state v is

1 _
py =TrpPy = - (e PH|y).

Partcularly, in the case of an eigenstate of the
Hamiltonian,
H|n) = Ep |n),

we have 1
DPn = E €

For one particle system we get Boltzmann distribution

Py = %eiﬁf”; Z = Ze*'ge".

BEn

Here €, is the one particle energy.
Because in the canonical ensemble we have

Inp=—-pH —1n Z,
the entropy will be

S = —kpTrplnp=—kg{lnp)
= kpBE+kplnZ.

Here E is the expectation value of the energy

E=(H)= %TrHe_BH.

The variation of the partition function is
6Z = Tré(e M) =—-68TrHe PH
= —6BEZ.

The variation of the enetropy is then

05

kg (E5ﬂ+ﬂ5E+ 67Z)
= kpBJE.

According to thermodynamics the temperature will be

oF 1
T=|(-— =,
(55>V,N ksp
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Free energy
Since 5
— Z=-Tre P H=—Z(H
57 e (H)
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E = a5 InZ = kgT 9T
we can write 5
S:kBé‘_T (Thn2Z).

The Helmholtzin free energy F' = E — TS can be
expressed as

F=—-kgpTlnZ.
With the help of this the density operator takes the form
p =P F—H),

Fluctuations
Let us write the sum over states as

Z= /dEw(E)e—ﬁE :/dEe—ﬁEJrlnw(E)_

We suppose that the function w(E)e PE has a sharp
maximum at £ = E and that w(E) ~ microcanonical
state density.

o(E)e P

Now

and
Inw(E) - BE =
Inw(E) - BE

=0, maximum
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At the point of maximum E = E we have

as
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average temperature

kpB =

So T is the average temperature. In the Taylor series
#S_ o (1\__1or__ 1
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normal distribution

L,

As the variance of the normal distribution in the
integrand we can pick up

(AE)? = kgT*Cy

or
AE = \/kpT2?Cy = O(VN),

because Cy, as well as E, is extensive (O(N)). Thus the
fluctuation of the energy is

Note Fluctuations can be obtained more
straightforwardly from the free energy:
0*(BF)
B

(- (m)”) =

Grand canonical ensemble

Let’s consider a system where both the energy and the
number of particles are allowed to fluctuate. The Hilbert
space of the system is then the direct sum

HZH(O)GBH(I)GB---GBH(N)@--'
and the Hamiltonian operator the sum
H=HO +g® ... g™ 4 ...,
We define the (particle) number operator N so that
Ny) = Ng) V|p) e HN).

We maximize the entropy S under constraints

(H) = E = given energy
<J\7 > = N = given particle number
= 1.

With the help of Lagrange multipliers we start with

5(S = A(H) = X <N> —\'I)) =0,

and end up with the grand canonical distribution

1 .
— _— ,—B(H—uN)
p Za e .
Here .
Za = Tr e~ BH—1N))

is the grand canonical partition function. In the base

where the Hamiltonian is diagonal this is
_ — (N) _ N)
Zo = X
N n
where
H|N;n) = H™ [N;n) = E{Y) |N;n),
when |N;n) € H™Y) is a state of N particles, i.e.

N|N;n) = N|N;n).

Number of particles and energy

Now
Jln ZG _ 1 _B(H—HN) ~
B = 7 Tre BN
= B(N) =8N
and
Oln ZG _ 1 —,3(H—NN) ~
a5 = Za Tre (H — puN)
= —(H)+,u<]\7> =—E+ puN,
)
N _ kBT Oln ZG
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Entropy

According to the definition we have
S=—kgTrplnp=—kg(lnp).
Now .
Inp=—-pH + BuN —In Zg,
o)
S =

—p— +kplnZg.

Sl &
S| =

Grand potential
In thermodynamics we defined

Q=FE—-TS— uN,

so in the grand canonical ensemble the grand potential is

Q= —kpTln Zg.



With the help of this the density operator can be written

as R
p = PO-H+uN),

Note The grand canonical state sum depends on the
varaibles T, V and u, i.e.

Zg = ZG(Ta v, IU/)

Fluctuations
Now
o2 : ) o
— Tre AH-uN)  _— Ty e—B(H—uN)52N2
n
= ZG/82 <N2> )
SO
(AN)? = <(N - N)2> - <N2> —N?
62 In ZG GN =
= (krT)? = kT — = O(N
(kT 57 = kaT 0 = O(N)

Thus the particle number fluctuates like

-o()

A corresponding expression is valid also for the
fluctuations of the energy. For a mole of matter the
fluctuations are oc 10712 or the accuracy = the accuracy
of the microcanonical ensemble.

Connection with thermodynamics
Let us suppose that the Hamiltonian H depends on
external parameters {z; }:

H(z;) la(:)) = Ea (i) la(z:)) -

Adiabatic variation
A system in the state |a(z;)) stays there provided that
the parameters x;(t) are allowed to vary slowly enough.

Ea(xi)

—

o=1
o=0

i

Then the probabilities for the states remain constant and

the change in the entropy
S=—-kgp Zpa In pq,
«

is zero. Now

0m, _ 0 _ (o 2

o, — oz (a| H |a) = <a o2, a> +Ea6$i (o] @)
. O0H
= (a 92, ),

since (o] a) = 1.
Let F; be the generalized force

OH
F;=— —

<a 61‘,
and dz; the related displacement. Then

§(H)=—>_ Fibm;.

_ _0F
@)= 81’2

Statistical study

Let us consider the density operator in an equilibrium
state ([H, p] =0). In the base {|a)}, where the
Hamiltonian is diagonal,

Hla) = E, |},

p= Zpapa;
[e3

we have

where
P, = |a){a]|.

We divide the variation of the density operator into two
parts:

adiabatic nonadiabatic

——
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TropH +TrpéH
TropVH + Tr6pP H + Z dz;Trp oH

> paTr HoPy+ TrépP H = Y Fiéu;.

Now

TeHO6P, = Y (BlH (la)(8al +|6a){al)|B)

B
= E,é{a|a)=0,
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§(H)y =Trép® H = Fidm;.
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S [ desE - E)f(E)
> F(Ea),

we can write the nonadiabatic term as

> 6paBa

= / dE w(E)E 5p(E).

TropPH =



According to the definition the statistical entropy is

St — Lo Zpa Inpg,.
a

Its variation is

=0
—

—kB Z O0pe Inpy — kB Z 0Pa

= —kp)_0pa Inpa

(Ssstat

= kp / dE w(E) 6p(E) Inp(E).

In the microcanonical ensemble
1 1

p(E) X @;

o

ZE,AE
holds, so

—kplnp(E) = kplnw(E) = S*(E),

where S5 (E) is the microcanonical entropy. The
variation of the entropy can be written as

§Sstat = / dE w(E)S**(E) §p(E).

We expand S*#*(E) as a Taylor series in a neighborhood

of the point £ = E:

Sstat (E) Sstat (E)
asstat (E) _
+ — (E—-E)+
oFE BB
_ E-E
— stat .
= S™¥YE)+ Toiat () +oee
Since

[ dBa(E)o(E) = 3 bpa =0,

we get
1
1 2
= o OOOH
or

5 <H) — Tstatésstat _ ZthS%

This is equivalent to the first law of the thermodynamics,
SU = Ttherm(SStherm _ (5W,

provided we identify

(HY = E =U = internal energy
Tstat — Ttherm
Sstat — Stherm
oW = work.

Z Fléwz =

Einstein’s theory of fluctuations
We divide a large system into macroscopical partial
systems whose mutual interactions are weak.
= 3 operators {X;} corresponding to the extensive
properties of the partial systems so that

[Xi, X;]

JH] =

= 3 a mutual eigenstate |E, X1,...,X,), which is one of
the macrostates of the system, i.e. corresponding to the
parameter set (E, X1,...,X,) there is a macroscopical
number of microstates. Let T'(E, Xy, ..., X,,) be the
number of the microstates corresponding to the state

|E, X1,...,X,) (the volume of the phase space).
The total number of the states is

~

[2)
[Xi

F(E) = Z F(EaXla"'aXn)
{Xi}

and the relative probability (E, X1,...,X,) of the
microstates

D(E, X1,...,X,)
E X,...,X,) = .
f( s <31, ) Tb) F(E)
The entropy of the state |E, Xy,...,X,) is

S(E,X1,...,X,) = kgIn[(E, X1,...,X,)

or .
= S(E,X1,...,.Xn)

X,) = =—=eFB .

) = 1)

In the thermodynamic equilibrium the entropy S has its

maximum

f(E7X17"'

50 =SB, X, .. x)

Let us denote by
2= X; — X

deviations from the equilibrium positions.
The Taylor series of the entropy will be

1
S:SO—EkBZgijIEiSEj-i—"',
i,J

where
1 (o5
9= ks \0X0X; ) |y,

We use notation

Z1
T = and g = (g45)-
Tn
Then
flz)=Ce 32792,
where

C = (2r)~™/%/dety.



Correlation functions can be written as

(xp---xp) = /d:z:f(:v):vp---:vr
0

0
- ... F(h
[Bhp Oh, (h) h.:O’
where
dx =dzy---dx,
and .
F(h)=e3"' 9 'k,
pVT-system

When studying the stability conditions of matter we
found out that

1

AT@'AS,' - ApiAV;' + A[I/ZANZ)

Supposing that there is only one volume element in the
system we get

f= Ce s (ATAS-ApAV+ALAN)

We suppose that the system is not allowed to exchange
particles, i.e. AN = 0. Employing the definitions of the
heat capacity and compressibility we can write

FAT, Av) x o~ [ 0T ey (47

We can now read out the matrix g:

T 1%
o= o ,
V 0 VkBTHT
The variances are then
kpT?
AT)?) =
(ary) = &
<(AV)2> = VkgTkr.

Reversibel minimum work
Let z = X — X(© be the fluctuation of the variable X.
For one variable we have

f(z) x e=397
Now S = S(U, X, ...) holds and
dU =TdS — FdX —dWiher-

We get the partial derivative

os _F
0X T’

On the other hand we had

1
§ = 5°-5kp %jgijmm
= 5% 1kBgaL"2
2 )
S0
95 _ 4
ax — BIT
and
F =—-kpgTgx.

When there is no action on X from outside, the deviation
z fluctuates spontaneously. Let us give rise to the same
deviation z by applying reversible external work:

dU = —Fdx = kpTgx dx.
Integrating this we get
1
(AU)rev = AR = 3 kpTgz?,

where AR is the minimum reversible work required for
the fluctuation AX. We can write

fAX) x e BT



