Fermionic systems

Electron gas
The ideal Fermi gas is a good approximation for example
for the conducting electrons in a metal.

When the single particle energies are ¢ = M is
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The energy per particle will be
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Degenerated Fermi gas

Suppose that kT < p.

Let’s write
1
Bl 11 =6(p — €) + h(e — p),
where
h(x) = sign(x) L
z) = sig R

The function h(z) deviates from zero only at the narrow
domain |z|SkpT < p.

~ H
Let’s evaluate the integral
= ¢(e)
/ de eBle—n) +1
/ de §(€) [0(4 — €) + hle — )]

/de¢ /deh ) [B(u +€) — $lu— o)

+/ de h(€)p(n — €).

The last term is of the order
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and can be discarded.

If ¢(€) regular enough in the vicinity of € & p we can
expand
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and we end up with Sommerfeld’s expansion
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Temperature T =0
Now
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The Fermi energy is

K2k2
eF:M: F

2m

The Fermi momentum is

pr = hkF.
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The density is
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The spin degeneracy factor of electrons is
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For the energy per particle we get
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The total energy is




Since
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Metallic electron gas
When we write the density as
N1
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and define the dimensionles number
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The Fermi temperature or the degeneracy temperarure Tr
is defined so that
kBTF = €F.

Now
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we have
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For aluminium the Fermi temperature is Tr = 136 000K.

In general, the metals satisfy

T<KLTp,

so the metallic electron gas is strongly degenerated.
Specific heat Let now T' > 0, but T <« Tp.
We need p = u(T), when % = p is known.
With the help of the Sommerfeld expansion we get
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From this we get for the chemical potential the expression

wT) =er ll—g (kfFT)2+---] :

Employing again the Sommerfeld expansion we get
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Now the energy/particle is
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The heat capacity which can be written as
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is small when compared e.g. with the specific heat of the
Maxwell-Boltzmann gas (Cy = Nkp 2). This is
understandable since the number of those particles that
can be excited with the thermal energy ~ kT is < MB
or BE gases due to the Pauli exclusion principle.



Pauli’s paramagnetism
The magnetic moment of the electron is
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In an external magnetic field the energy of an electron is
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when the kinetic energy is
2
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We still treat electrons as non interacting so the grand
canonical partition function is as before, provided that we
replace ep — ep + upBo.
The occupation numbers of the states are now
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Since the metallic electron gas is strongly degenerated
(T < Tr), we can restrict to the temperature T = 0.
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The Fermi wave vectors can be determined from the
conditions

K2 k2

o THBB =
h2k2.

217: —-pB = p.

Since the number density is
9s 13
p= 67:2 kF7

the spin population densities are
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If the strength of the magnetic field is
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the magnetic energy is of the same order as the Fermi
energy. For metals er ~ 5eV, so By ~ 10°T. So the
realistic magnetic fields are < By and we can work at the
small B limit. Let us denote
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From this we get
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The relative polarization is
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The magnetization per volume element is
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The susceptivity is, according to its definition,
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Pauli’s paramagnetic susceptivity is then
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provided that T < Tr and upB < €p.
In aluminium the electron density is
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and the Fermi energy
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The susceptivity
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is now small since only the electrons very close to the
Fermi surface can be polarized magnetically.

Two dimensional electron gas
The Hamiltonian for a free electron in the magnetic field

B=VxA

is given by

Convenient unit of

e the energy for non-interacting electrons is hiw., where
we = eB/m*c is the cyclotron frequency.

e the energy for interacting electrons is e?/efy, where

=

o the length is £y = (fic/eB)? , the magnetic length.
Consider electrons
e confined to zy-plane.

e subjected to a perpendicular magnetic field B||2.

The eigenenergies are the discrete Landau levels

1
E, = (n—|—§> hwe, n=0,1,2,....

Choosing the Landau gauge
A = (0, Bz,0)

the single particle Hamiltonian is
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The eigenfunctions are

where the center of the oscillatory motion is given by

X = —k,03.

Confine the system in a rectangular cell

A

Using periodic boundary conditions we have
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The number of allowed values of n,, i.e. the degeneracy
of each Landau level, is
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where &y = hc/e is the flux quantum.

Thus, on each Landau level there is exactly one state for
each flux quantum and for each spin polarization.

When N, is the number of electrons in an area and N
the number of flux quanta we define the filling fraction as

Nng T
To treat the spin we note that

e there should be the Zeeman coupling term

H =p-B=—gupBs,

Zeeman
in the Hamiltonian. Here g is the Lande factor and
up the Bohr magneton.

e in addition to the Zeeman term there are no spin
dependent terms in the Hamiltonian, not even in the
interacting many body system.

e the problem can be solved disregarding the spin. At
later stages we can add the total Zeeman energy

=gupBS,.

Zeeman
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We observe that
/ e e the Hall resistivity develops plateaus with
h
Va pwy:@, n=123,....
This quantization condition is obeyed with extreme
accuracy. In fact, the current ISO standard for
resistivity defines
25812.807
Poy = ——— .
n
e at the same time the diagonal resistivity practically
The conductivity ¢ and the resistivity p are defined by vanishes.
j=ocE, FE =pj. Classically the diagonal and Hall
conductivities are For the moment we suppose that the electrons are
polarized. If the current carrying electrons fill up exactly
n Landau levels, it can be shown that p,, = h/ne? and
Pzz = 0.
The plateaus can be explained by noting that
e in an ideal pure 2DEG the density of states is a
- 1 series of §-peaks separated by hw,.
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where 7 is the relaxation time. In particular The Hall conductivity can be written in the form
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Experimentally the resistivities behave like Ozy =~ "g~ + Aoy,



where, according to the Kubo formula, the contribution
from a localized state |a) to Aoy, is

E
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Here f(F) is the Fermi distribution function.
When the number of electrons changes we observe (at
T =0) that

e as long as the Fermi level lies within the localized
states, o;, remains constant.

e if all states below the Fermi level are localized, the
terms in o4, cancel exactly and o,y = 0.

e for QHE to exist there must be extended states in
Landau levels.

As a function of the density the conductivities behave like
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decreasing magnetic field corresponds to increasing filling
factor, i.e. decreasing the magnetic field is equivalent to
increasing the number of electrons.

Increasing the magnetic field (i.e. reducing the electron
density) furthermore one finds resistivities to behave like
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The plateaus in the Hall resistivity and the minima in the
longitudinal resistivity correspond to filling fractions

V=,

q

where

e p and q are small integers (J11).
e ¢ is an odd integer.

This behaviour is called as the Fractional Quantum Hall
Effect (FQHE) as opposed to the previous Integer
Quantum Hall Effect (IQHE).

Regarding the IQHE we note that

e the plateaus correspond to full Landau levels,

e the Landau levels are energetically far from each
other as compared to typical electron-electron
interaction energies (at least when v<5).

e the mutual electronic interactions play practically no
role.

While this single particle picture is sufficient in the IQHE
it cannot explain the FQHE where

e the Landau levels are only partially filled, so that
e there is room for the Coulomb intra level interaction.

It turns out that the correlations due to the electron
interaction are essential in the FQHE.

Laughlin’s theory
For a while we work in the symmetric gauge

1
B=_(— 0
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and in the cylindrical coordinate system. The single
particle Hamiltonian is now
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The Schrodinger equation takes the form
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Its solutions can be written as
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In particular, in the lowest Landau level (n = 0,m > 0),
the wave functions are
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where we have written
z=re” =g —iy.

It is easy to show, that the quantum number m can take
the values
m=0,1,...,N; — 1,

where
A
* 2ml?
is the degeneracy of a Landau level. In the lowest Landau
level the wave functions are therefore of the form

1,2,2%,..., 271 times Gaussian.

The great idea of Laughlin was to propose the Jastrow
type function

N, N
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as the many body ground state wave function. To get the
Fermi statistics m must be odd.
Laughlin’s wave function has some remarkable properties:

e in the thermodynamical limit the parameter m is
related to the filling fractio v as

e it can be mapped to a charge neutral two
dimensional classical plasma, which makes it possible
to use classical statistical mechanics to evaluate e.g.
the energy.

e small systems (<12 particles) can be solved exactly.
Comparisions with Laughlin’s wave function show
that it is practically the exact solution of the many
body problem

Spin polarization

We consider the filling fraction v = 1, i.e. the lowest
Landau level is fully occupied. We turn on the
electron-electron interaction and note that

e typically the Landau level separation Aw, is
(much) larger than the characteristic Coulomb
interaction energy e?/efy.

e if the electrons remain polarized the interaction
cannot do much: all energetically favorable states are
already occupied.

So, we let electrons to flip their spins. However,

e according to Hund’s rule the repulsive interaction is
the smaller the larger the total spin S.

e In the absence of the Zeeman coupling all possible S,
states are degenerate.

e the Zeeman coupling gupBS, tends to polarize the
system, although the Lande g-factor is rather small
(in GaAs g = 0.5).

We conclude that the ground state at ¥ = 1 is polarized.

The diagonalization method

We will work in rectangular geometry with periodical
boundary conditions.
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Our Hamiltonian is

H= HO + He—e + He—im + He—b + Hb—b;

where

e we suppose a homogenous positive background,

Ho is the single particle Hamiltonian,

He.e is the Coulomb interaction between an
electron and all other electrons and their images

summed over all electrons,

He.im is the interaction between an electron and its

images,

Heb is the electron-background interaction,

o Hy.p is the background-background interaction.

The Zeeman coupling is treated afterwards.

We

1. restrict to the lowest Landau level.

2. work in occupation representation. There

_ A1
H = E w;a;, a;,
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where operators a;r-o (a;,) create (destroy) an

electron with spin ¢ in a single particle state j.

3. fix Ny, the number of flux quanta (= 10). This is
also the number of allowed single particle states.

4. fix N, the number of electrons. At full Landau level
(v=1) N. = Ns,.

5. fix the polarization S, and the total momentum since
they are preserved by Coulomb interaction.

6. form the basis by constructing all possible
non-interacting states satisfying the above conditions.

7. represent the Hamiltonian as a matrix in the basis
constructed above.

8. diagonalize the matrix. As a result we have the
energy spectrum and corresponding eigenvectors.

9. for each eigenstate find its total spin S. Since
[H,S] =0, we know that these eigenstates are
eigenstates of spin, too.

(S:)

We now have the spectrum Ey, Ey, Fs, ... for the
interacting many particle system. To calculate the
polarization we note that

e the energies E; are associated with other quantum
numbers like the total spin S; and its z-component
S

e since there are no spin dependent term in the
Hamiltonian all states with quantum numbers
(Eia Si7szi = _Si)7 (Eiasiy Sz =—8; + 1)) sty
(E;, S;,S2i = +8S;) are degenerate. So, the
expectation value of S, would be 0.

e the Zeeman interaction must be turned on. The
energies will shift like

€; = E; — gupBS.;.

It turns out that, as expected, the total spin in the ground
state is So = N./2 (supposing N, to be even). Due to the
Zeeman coupling the ground state is polarized at T = 0.
The spins of the excited states, however, have all the
possible values 0,1, ..., N, /2. So, we expect the
polarization to decrease with increasing temperature.

The dependence on temperature is evaluated in the
canonical ensemble as
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(S,) = 7 Xi:gm.e (Bi—gp )/ ,

where Z is the canonical partition sum

7 = Ze_(Ei_guBBS“')/kBT.
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Relativistic electron gas
The rest energy of an electron is

me? = 0.511keV

and the relativistic total energy

& = V(me*)? + (cp)?
2
= m02 —+ p_ 4+ -
2m
Denote by
k. = % =2.59-10"?m™?

the Compton wave vector of an electron and by

Ae = z—” =243-10 2m

Cc

its Compton wave length.
Since p = hik, we have

e = ch/k2 + k2.

Periodic boundary conditions are the same as in the non
relativistic case i.e.

2
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so we have
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When kp = (37%p)'/3 is of the order k., the relativistic
corrections must be taken into account. The
corresponding density is

kg 35 1
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Q

10% x density of metallic electron gas

We have an ultrarelativistic electron gas when kp > k. or
correspondingly p > p..

Let us consider cold relativistic material, i.e. let us
suppose T K Tp.

The total energy is
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where
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is the average electronic energy.
At the non relativistic limit we have
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from which our earlier results can be derived, provided
that the rest energy of electrons is taken into account.
At the ultrarelativistic limit kr > k. we get
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Thus the energy density is

E 3
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and the pressure

at the ultrarelativistic limit

p= % g — i (3772)1/3cﬁp4/3.
White dwarf

In a properly functioning star the energy released in
nuclear reactions (mainly 2H — He) and the collapsing
gravitational force are in balance. When the nuclear fuel
is comsumed the start collapses. If the mass of the star is
large eneough all material will become ionized. Depending
on the mass of the star the final state can be for example

o white dwarf, if the pressure of the degenerated
electronic plasma prohibits further compression.

e neutron star if the electronic pressure is not enough
to compensate the gravitational force. The matter
compresses further to neutrons and their degeneracy
pressure prohibits further collapse.

Typical properties of a white dwarf:
o the diameter of the star 2R =~ 10*km.
e the total number of nuclei Ny = 10°7.

e the mass M ~ 10°°kg ~ M, where
Mg = 1.989 - 103%kg is the mass of the sun.

e the mass density pp, ~ 10'%kgm 2 is about 10%x the
density of the sun or of the earth.

e the number density of electrons p &~ 10**m=3. Then
kr =~ k., so the electron gas is only moderately
relativistic. In inner parts the gas can be much
denser and thus ultrarelativistic.

e the pressure p ~ 102?Pa ~ 10'7atm.

e the temperature in inner parts 7 ~ 10'K ~ Tg,.
Since the Fermi temperature is Tr ~ 10'°K > T we,
however, have a cold electron gas.

Let p(r) be the pressure at the distance r from the center
of the star, g(r) the corresponding gravitational
acceleration and pp,(r) the density.
pPA
ptdp A
R B

|
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The condition for the balance of hydrostatic mechanical
forces is

)
Now oM
o) = 0,

where M (r) is the mass inside of the radius r and

2
G = 6.673-10"1
kg

is the gravitational constant. We get the pair of equations

) _ o M)pn ()
dr 72
d]\g:r) = darip,(r).

Because in nuclei there are roughly as many neutrons as
protons, and, on the other hand, there are as many
protons as electrons, we have

Pm(r) = 2mypp(r).
Here
m, = 1.673 - 10~%"kg

is the proton mass and p(r) the number density of the
electrons.

As a good approximation the electron density of a star
can be taken as a constant, p say. Then

M(r) = gwmppr3

and thus the total mass

M = gwmppR3,



when R is the radius of the star. The pressure must now
satisfy the differential equation

dp 6 5,
— = ——7am;p°Gr

dr 3 v

with the boundary condition that the pressure vanishes at
the surface, i.e.

p(R) =0.
Integrating the differential equation we get for the
pressure at the center

8m .
=3 Gmip°R*.

Since the electron gas is not quite ultrarelativistic we
calculate more accurately than before. The average
electronic energy is
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From this we can get for the pressure
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This the equation of state of the relativistic electron gas.
We require that the pressures obtained from the equation
of state and from the hydrodynamic balance conditions
are equal in the center, i.e.

%T Gm,p’R* =

m2c?
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When we substitute the electron density (as a function of
the mass and radius)

3M

p= 8mmpR3

we get the condition
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~ 4700km.

For the radius of the star we get

o) -G

We see that the white dwarf has the maximum mass

M = M,.. A more careful calculation shows that the mass
of a white dwarf cannot exceed Chandrasekhar’s limit,
about 1.4Mg, without collapsing to a neutron star or a
black hole.

Other Fermionic systems

Nuclear matter
The mass density of heavy nuclei is

pm ~ 2.8-10"kgm ™3

When we assume that the proton and neutron densities
are equal the Fermi wave vectors of both gases are

kr ~1.36-10"m™*
and the Fermi energies
€r ~ 38MeV.

Since mnc? = 938MeV, the nuclear matter is non
relativistic. The attractive nucleon interactions cancel the
pressure due to the kinetic energy.

Neutron star

When the mass of a star exceeds the Chandrasekar limit
the Fermi pressure of the electrons is not enough to
cancel the gravitational force. The star continues its
collapse. The star forms a giant nucleus where most
electrons and protons have transformed via the reaction

pt+e —=n+vuv,
to neutrons. The radius of the star is
R =~ 10km,

the nucleon count
Ny =~ 10%7

and the mass density
pm = 1018kgm ™3

The pressure acting against the graviation is mostly due
to the pressure of the Fermi gas and to the strong, at
short distances very repulsive nuclear forces.

Quark matter

When nuclear matter is compressed 2-10 times denser
that in atomic nuclei. the nucleons start to ”overlap” and
their constituent quarks form a quark plasma.

Liquid *He
The nucleus is p+p+n and the nuclear spin %



At low temperatures the nuclear spin determines the
statistics, i.e. >He atoms are Fermions.
The Fermi temperature corresponding to the normal
density is .
F
Tr = Py 5K.

Since the mutual interactions between 3He atoms are
considerable the 3He matter forms an interacting Fermi
liquid. The 3He liquid has two super phases (A and B).
These are in balance with the normal phase at the critical
point

Tr

T. ~ 2.7TmK .
e~ 2.TmK < 7505



