Ideal systems

System of free spins
Let us consider N particles with spin 1:

s = 1
Sz = *

D= S

A i=1,...,N.

The z component of the total spin is

S.=> Si= %h(NJF - N7),

where
+ 1 :
NT = +§ h spin count

N-

1
3 h spin count.

S, determines the macrostate of the system.
Denoting S, = hr we have

Nt = 1N—}—I/
2
N~ = 1N—I/
2
and . ) )
=—-N,——-N+1,...,=-N.
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Let W (v) the number of those microstates for which

S, = hv, i.e. W(v) tells us, how many ways there are to
distribute N particles into groups of N* and N~
particles so that Nt + N~ = N and Nt — N~ = 2v.
From combinatorics we know that

N N

W) = ( Nt ) = NHIN-
N

AN+ EN o)

W (v) the degeneracy of the state S, = hv.
The Boltzmann entropy is

S =kplnW(v).
Using Stirling’s formula
InN!'= NInN — N
we get

W) =

We look for the extremum of W (v):
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We can see that v = 0.
Now
O?InW(v) _ N
o’ v—o TN2—p2 vo
4
= _N<0’

so v = 0 is a maximum.
Let us expand In W (v) as a Taylor series in the vicinity of
its maximum:

InW(v) =InW(0) — %I/2 + 0%,

so W (v) obeys the normal distribution

2

W(v) ~W(0)e ¥,

whose deviation is

In this distribution
InW(0) =~ NIn2

or

Total number of states

We have exactly

Wtot =

;(Aﬁ)z(lﬂ)N
2N,

According to the previous treatment we can write
approximatively

2

WEEPT ~ ZW(O)e_%”ZxW(O)/ dve ®V

~ 2V /TN,
V2

On the other hand we have

. non extensive
extensive

,—/H 1
In W2 = Nln2 +§ln(gN)

= InW;e + non extensive



Energy

Let’s put the system in the external magnetic field
B= /J‘()Ha

where
H=H:z

is the magnetizing field.
The potential energy is

E= —/J/()le;i -H = _NOHZNZ'Z;
i i

where p; is the magnetic moment of the particle 4.
Now

=75,
where + is the gyromagnetic ratio. For electrons we have
e
Y= 270 =
m

where 7o is the classical value 5.
For electrons we can further write

K = —pBO; = FUB.
Here o, is the Pauli spin matrix and

eh eV
- —579.107°%2-
uB om 5.79-10 T

the Bohr magneton.
Thus the energy is

E= —MOHZMZ = —povHS, = ev,

where
€ = —hyuoH

is the energy/particle. For electrons we have
€ =2uoupH.

Now
AFE =eAv,

so from the condition
w(E)AE =W (v) Av

we get as the density of states

1) Microcanonical ensemble
Denoting
EO = 5 GN,
the total energy will lie between —FEy < FE < FEj.
With the help of the energy the degeneracy can be
written as
1 4F? E Ey+FE
1 = —Nlh 25 —=1
nW() 2 "EH - ¢ "E-E
= Inw(E)+Inlel

As the entropy we get

S(E) = kplhw(E)
1 AE2 E  Ey+E
— Nkp|=In —20_ _ =
kB |5 "EI-E? 2B, E-E

+non extensive term.

The temperature was defined like

1 9S

T ~ 9E’

SO
1 N . Eo+E

B(E) = FeT(E) - 2F “E B

We can solve for the energy:

BEq
E = -E h —
otan N
1 pohyH
= —— NpohyHtanh { ——— | .
g HoTE RA <2kBT

The magnetization or the magnetic polarization means
the magnetic moment per the volume element, i.e.

1

The z component of the magnetization is

1 ev 1 hypoHv
V uH V. pH
1

M, =

Now
E = —/,L()HVMZ,

so we get for our system as the equation of state

Noh’YH)

1
M = Eph'ytanh( kT

where p = N/V is the particle density.

Note The relations derived above

E = E(T,H,N)
M = M(T,H,N)

determine the thermodynamics of the system.

2) Canonical ensemble
The canonical partition function is

Z = Z e BEn,
Here
N
E, = _NOHZNiz
i=1

the energy of a single microstate.

Denote 1
Wiz = hyv;, v = ii'



Now
eﬁll«oH Z, Wiz

7- %

all microstates

[N

= Z Z ot 2
__l __l
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N
v=—1
where Z; the one particle state sum
Z, = e~ 3 BroHY | o3 BuoHY
H
= 2cosh Hol?y
2kpT "

The same result can be obtained using the degeneracy:

7 = ZW(V)e_ﬂE(”)
> W(w)e P
Z(z\jr\; )e—ﬂe(m—%m

N+

— e_%BGN (1 + e_Be)N
The free energy F is
F = F(T,H)=—-kgTlnZ

_ woH~h
= kBTN [ln2+lncosh kT ]

The entropy is

OF
- - ()
T ) g
_ o H~R
= Nkp|In2+Incosh kT
_uowa anh pohyH |
2kT 2kgT

Differentiating the free energy with respect to the field H

we get

OF 1 0
— — - = —Bev
(aHz)T kBTZ 5 ;W(u)e

1
_ —Bev
= povh 7 E,, vW (v)e

= povh(v) = poV»M..
Thus the differential of the free energy is
dF = —-SdT — woVM -dH,

so the magnetization is
M o= L (oF
/I/()V OH T

1 pohvH
= —= h .
5 P tan <2kBT

This is identical with the result we obtained in the
microcanonical ensemble.

Also, the microcanonical entropy = the canonical entropy

+ a non extensive term.

Energy

a)

E = (Bp)=er=-—tl

7 9B
1 1
= —iNeta,nh (§B€>
= the energy of the microcanonical enesmble.

b) According to thermodynamics

F=E-TS
or
OF
E = F+TS=F-T T
= F+ﬂ BF
ﬂ 6ﬂ (BF)
0
= — InZ
“ap "
= the energy given at a).
Susceptibility

According to the definition the susceptibility is

= (o), = (o)
X = \er),” v \om?
2
pop __(3M)

ksT 2 ((fypoHY '
B~ cosh (2}“;’7,)

When H — 0 we end up with Curie’s law

¢
TJ

pop (1 ?

Thermodynamical identifications
Earlier we identified

X:

where

Es%t = F = (H) = U'™ = internal energy,

SO
F = E—-TS= Ftherm
= the Helmholtz free energy
= U-T8S.
Now
dFF = -=-8dT —uyVM-dH
dFtherm — _ g qT —dw,



SO
dW = pVM - dH.

Another possibility
Let us identify

E = enthalpy = H*he™ = f,

Then
F = E—-TS= cherm —-TS = Gtherm
= the Gibbs free energy = G
and
dG = -SdT — uVM-dH
dH = TdS—uVM-dH,
S0

G = G(T,H)
H = H(S, H).

In the thermodynamics we had for a pV'T system
dH =TdS +V dp,
from which we get the analogies

p «— —uoH (intensive)
V +— VM (extensive).

On the other hand we had

U=H —-pV
and
dU =TdS —pdV =TdS —dW,
SO NOw
U=H+uwpVM-H
and
dU =TdS + wVH -dM,

fro which

dW = —poV H - dM.

Example Adiabatic demagnetization Now

NikB =In2+Incoshx — ztanhz,
where
_ HohHry
2kgT ~

When T — 0, then  — oo, so that

Hence

S
S 9pe 4.,
Nkp — 2ze +

When T — oo, then z — 0, and

S
N—kB — 1n2.

> T

We decrease the field adiabatically within the interval
a — b. Now S = S(H/T), so that

_g(Ha\_g _g(H
s.=5(72) =si=5(7)

Hy

H,

or

Ty
T,

Negative temperature
The entropy of the spin system is

1 4E?2 E Ey+E
E)=Nkp|z1ln % — —1
S(B) = Nks |5 “"EI_E2 2B, " Ey-E|’
where
Ey = poupHN ja — |E0| <E< |E0|
Now

Originally the maximum of w(E)e™#¥/Z is at a negative
value E. Reversing the magnetic field abruptly £ — —FE
and correspondingly f — —f.

The temperature can be negative if the energy is bounded
both above and below.

1
Incoshz = In §e$(1+e’2z)
= r-In2+e 4.

and

e?(1 —e27)
e" (1 + e—2%) Classical ideal gas (Maxwell-Boltzmann
= 1-224.... gas)

tanh x



We define r; so that

The volume occupied by one molecule =

podia V1
T3 TN T
or
3
P — 3 _
i 4mp
Typically

e the diameter of an atom or a molecule d ~ 2A.
e the range of the interaction 2-4A.

e the free path (collision interval) I ~ 600A.

e at STP (T = 273K, p = latm) r; ~ 20A.

or
d € rp <€ 1

2 20 600 A

The most important effect of collisions is that the system
thermalizes i.e. attains an equilibrium, which corresponds
to a statistical ensemble. Otherwise we can forget the
collisions.

Let us consider a system of one molecule which can
exchange energy (heat) with its surroundings. Then the
suitable ensemble is the canonical ensemble and the
distribution the Boltzmann distribution

1
p=Allpll)y = e,

where the canonical partition function is
Z = Z ePe,
1

Since in the k-space the density of 1 particle states is
constant, in the velocity space, where

1 3
d’v = — d®p = (E) &k,
m m

the density of states is also constant.
Because the system is translationally invariant we have

k21,
=S mv7,

e = (k| H|k) = —— = 3

so that the velocity distribution is

f() o (k| plk) = ¢ o

or

f(v) = Ce %*aT,

C can be determined from the condition
0o mo? 3
/f('u) dv=C [ dvze_m]

c (27rkBT)3/2‘

m

Thus the velocity obeys Mazwell’s distribution

m \3? e
— T 2kgT |
@) (27rkBT> ¢

From the relation
/d3v=/ A’ do
0

we can obtain for the speed (the absolute value of the
velocity v = |v|) the distribution F(v)

F(v) = 4mv® f (v).

F(v)

A' |

e The most probable speed
2kpT
Uy = .

m
e The average of the speed
8kpT

(v) = /OOO dvvF(v) = .

m™m

e The average of the square of the speed

(v?) = /000 dv v F(v) = 3kBT.

m

1 1, 1, 1
<§mvw> = <§mvy> = <§mv2> = ikBT
Lo\ _o/1 o\ _3
<2mv >—3<2mvz>— 2kBT,

i.e. the energy is evenly distributed among the 3
(translational) degrees of freedom: the equipartition of the
energy.

Note

and

Partition function and thermodynamics
The single particle partition function is

Z(B) =

3/2

943 (2rmkgT)



Here g is the spin degeneracy.
When we denote the thermal de Broglie wave length by

A P
T =\ 2rmkpT

we can write the 1 body partition function as
V
Z(B)=g N
T

In the N particle system the canonical partition function
takes the form

1 —Bleg, +teg, )
Iy = me¥ D e kTR
k. kx
N
LY; —Be
k
1 N
= mzl

Here N! takes care of the fact that each state
|k1, ... kn)

is counted only once. Neither the multiple occupation nor
the Pauli exclusion principle has been taken into account.
Using Stirling’s formula In N! &= NIn N — N the free
energy can be written as

Fy =
=—kpTIlnZy
N 3
= NkgT lnv—l—lng+h)\T
N 3 3 2
=NkpT|ln — —=-InT—-1-1 =1 .
Ll R A "9ty n27rka]
Since

dF = —SdT — pdV + udN,

the pressure will be

OF 1
p=—gy = NkTy;

i.e. we end up with the ideal gas equation of state
pV = NkgT.
With the help of the entropy

oF F 3
S__a_T__?-'-QNkB

the internal energy is

U:F+TS:gNkBT

i.e. the ideal gas internal energy.

The heat capacity is

ou 3
o= (%) =ixi

Comparing this with
1
Cv =35 fksN
we see that the number of degrees of freedom is f = 3.

Grand canonical partition function
According to the definition we have

Zo = Z Ze—ﬁ(EiN)—uN) — ZZNZN;
N n N

where
5 = ePH

is called the fugacity and Zy is the partition function of

N particles.
So we get

The grand potential is

1%
Q(T, VJ /J') = _kBTlIl ZG = —kBTeBN'i_%"
Since
dQ) = —SdT — pdV — Ndp,
we get
o0 Q g
= — _ > — kpTePr L
P oV 1% BLE€ A3,
and
N=———= Bud” —
op C N kel

or we end up with the ideal gas equation of state

pV:NkBT.
Here

_ NNZ

N o= (=22 N

ZNZNZN

1 6ZG 611’1ZG
= —_—— = .

Zg 0z Olnz

Another way



We distribute N particles among the 1 particle states so
that in the state [ there are n; particles.

€,
@ n =1
® ® ® ° n =4
® ® n; =2
Now

N:an andE:Zeml.
l l

The number of possible distributions is

N!

W=W(n1,n2,... ﬁ
nynogt---Nge---

,nl,...) =

Since in every distribution (ny,ns,...) everyone of the N!
permutatations of the particles gives an identical state
the partition function is

Zg = Tre PH-uN)

= i i %Wefﬁ(E*uN)

n1—0 no =0

- >3-

n1= Onz 0

- I3

l n=0

= JJew [e—B(ez—u)]
l
= exp lZe‘ﬂ(“_“)]
i

= exp[e?*Z]

e P > mla—n)

nl'nz

—Bn(e1— u)]

or exactly as earlier.
Now

0lnZg - e Bnle—n)

661

5271 On
IL oio m e_ﬁn(q W]
= —B{m)

so the occupation number i of the state [ is

1 0
50€z

_ 1 81nZg
nl = <nl) = —_—— =

B O«
— e Bla—n),

e~ Ble—p)

The Boltzmann distribution gives a wrong result if the 1
particle states are multiply occupied. Our approximation
is therefore valid only if

<K€l Vi

or
ePr < P .

Now min ¢ = 0, so that
Pr < 1.

On the other hand

and _
N 1 3
Vv Anrd’
so we must have
Ar L 1
Now
B2
Ap =4 ———
T 27rmk‘BT

is the minimum diameter of the wave packet of a particle
with the typical thermal energy (¢ = kgT) so in other
words:

The Maxwell-Boltzmann approximation is valid when the
wave packets of individual particles do not overlap.

Occupation number representation
Let us consider a system of N non interacting particles.
Denote by

|TL1,TL2,...,’I’LZ',...)

the quantum state where there are n; particles in the 1
particle state 7. Let the energy of the state ¢ be ¢;. Then

(Z niei> |n1, na, .. )
Zni.

H|n1,n2, -

) =

N

We define the creation operator a;-r so that

a;r |n1,m2,...,n4,...y =Clni,na,...,n; +1,...)
ie. a;r creates one particle into the state i.

Correspondingly the destruction operator a, obeys:

!
a; |n1,n2,...,ni,...) =C |n1,n2,...,n,~ - 1,...),
i.e. a; removes one particle from the state i.

The basis {|n1,n2,...)} is complete, i.e.

Z |’I’L1,’I’L2,

{ni}

’I’Ll,’n2, | =1



and orthonormal or

(ny,mh,. .| n1ymay ) = Oyt s < -

Bosons
For bosons the creation and destruction operators obey
the commutation relations

[a,al] = &
[a,0]] = [al,al]=0.

It can be shown that

ai|n1,...,ni,...) = \/ni|n1,...,ni—1,...)
a;[|n1,...,ni,...) = Vn;+1|ng,...,n;+1,...).

The (occupation) number operator

n; = a;[ai
obeys the relation

a;fai [P1, ey gy )

,’I’Li,...)

) =

= ning,...

ni|n1,...,n,-,..

and n; =0,1,2,....

An arbitrary one particle operator, i.e. an operator O(),
which in the configuration space operates only on the
coordinates on one particle, can be written in the
occupation number representation as

oW = Z <z‘ oW ‘]> a;[aj.
4,
A two body operator O?) can be written as

0® = Z <z]‘ o® ‘kl> a;[a;r-alak.

ijkl

Example Hamiltonian
H= Z—h—2v2+1 ZV(’I‘* ;)
S~ ! 25 v

takes in the occupation representation the form

H = Z<z j> ala;

i3
1 ..
ts Z (1| V' |kl) a;fa;‘.alak,
ijkl

h? o,
v

and
(| V |kl) =
/ 1)L (r2)V (11, 72) by (r2) by (1) Aoy .

Fermions
The creation and destruction operators of fermions satisfy
the anticommutation relations

{ai,a;} = aia;r- + a;r-az. = d;j
{az’aaj} = {a;[aa;r'}:o'
It can be shown that
ai|n1,...,n,~,...) =
(=15 /milng,...,ni—1,..), ifn;=1
0, otherwise
a;.'|n1,...,n,~,...) =
(—1)Siwn,~+1|n1,...,n,~+1,...), 1fn,=0
0, otherwise
Here
Si=mni+na+---+ni-1.
The number operator satisfies
g N1y ey Mgy e ) =M N1,y NGy )
and n; =0,1.

One and two body operators take the same form as in the
case of bosons.

Note Since a; and a; anticommute one must be careful

with the order of the creation and destruction operators
in 0.

In the case of non interacting particles the Hamiltonian
operator in the configuration space is

H = ZHl(’l"i),

where 1 body Hamiltonian H; is

o,
Hl(T‘i) = —% Vz + U(T‘l)

Let ¢; be eigenfunctions of Hj i.e.

Hi¢;(r) = €;¢(r).

In the occupation space we have then
H=3 ecjaja; =3 e
J J
- i .
N=3 ala; =3 ;.
J J
The grand canonical partition function is now

Zg = Treiﬁ(ﬁ*l‘N) = ZZ .. .67621 "l(el*N)‘

niy n2

and

Bose-Einstein ideal gas



In bosonic systems the occupations of one particle states

aren; =0,1,2,.... The grand canonical state sum is
oo o
ZgBE = Z Z SEDIRACED
n1:0 n2:0
o0
=11 lz e—ﬁn(el—u)]
l n=0

The grand potential is

QBE = kBTZIH [1 - e_ﬁ(“_“) -
1

The occupation number of the state [ is

.. nleiﬂ Em Nm (Em 7”/)

|
I
B
h
-
N
g

n
ni na
190 Q
= ————InZg= 6—,
ﬂ 861 861
and for the Bose-Einstein occupation number we get
_ 1
= eBla—w) _1°

Entropy
Since dQ) = —SdT — pdV — N du we have

on
5= (a—T)“
= —ksY In [1 — e=Ble=n)
l
Ty b (= e Blamn L
Pl LT —eBlamm kpT?
Now
eBla—m) —q + _l
iy
and
Ber — p) = In(1 + 7y) — Innyg,
SO
ny
= - In{1-—
s kn ; . ( i + 1)
+kB Z ny [ln(ﬁl + 1) —In ﬁl]
l
or

S=kp Y [(A+1)In(A + 1) — i Inmy).
1

Fermi-Dirac ideal gas
The Hamiltonian operator is

=Y ada,
l

and the number operator
N=Yda,
]
Now

{al, a;r,} = (5”/

and
{a,0p} = {a,a};} = 0.

The eigenvalues of the number operator related to the
state [,
ny = a;'al,

are
n; = 0, 1.

The state sum in the grand canonical ensemble is

ZG,FD
= Tr e*B(ﬁ*HN)

1 1
=y ¥ ...<n1n2.__‘e—ﬁ(fl—u1\7) ‘mm...>

n1=0 ne=0

= i i e B mle—m)

n1=0ns=0

10 {i = Brlei—n) }
1 n=0

_ —Bla-w)]
l;[[l+e ”‘]

The grand potential is

QFp = —kBTZIIl [1 =+ 676(617”) .
l

The average occupation number of the state [ is

iy = ()= Trﬁle_ﬁ(g_“m

ZG,FD
1 1 1
= 3 > oo B 2 (e —p)
G.FD n1=0n2=0
10In ZG,FD _ 6QFD
B e B¢

6_5(61_”/)

14 e flam’

Thus the Fermi-Dirac occupation number can be written

as
1

™= eBla—n) 4+ 1°




The expectation value of the square of the occupation
number will be

2 1 32 BUT—ur)
= Trh "
<nl > ZG FD rn

— IBZ , (€ —p)
ZG — Z Z l
n1=0 no=0
1 1 &Zgrp
B% Zagrp  0¢’

_ 1 _1 11 [1 + e—ﬁ(fu—u)]

B8 Zgrp i

0

Y o Bla—p)
X 9 e
e Blei—n)

1+ e*B(EI*H) =

This is natural, since n? = n;.
For the variance we get

(ATL[)2 = <nl2> — (nl)2 =n; — ﬁl2
= (1l —ny).
An,

> kT <

u K

There are fluctuations only in the vicinity of the chemical
potential p.
The entropy is

_on
aT

ks Y In [1 48w
l

s =

=ny

e Blei—n)
Tzl_{-e Bei— H)( ,LL)

Now B(e — ) =In 1;“’_“ and 14 e Ala—n) = l;m’ SO

S=—kp Y [(1—a)In(l —7) + 7 Inmy].
l



