Interacting matter

Classical real gas

We take into account the mutual interactions of atoms
(molecules)

The Hamiltonian operator is

N

HN) = 22’; D o(ry), rij =Iri—rjl.
i=1 i<j

For example, for nobel gases an excellent interaction
potential is the Lennard-Jones 6-12-potential

We evaluate the partition sums in the classical phase
space. The canonical partition function is

ZN(T,V) = (T V,N) —BH™

pH .
oot N1 /dFe

limit,
Maxwell
Boltzman

=Tr ye

Since the momentum variables appear only as quadratic
in the kinetic energy terms they can be integrated and we

get
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The grand canonical partition function is
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when z = eP* is the fugacity.

Z(T,V,p) =

We define an intensive function
1
w(z,T) = v In Z(T,V, ).

The grand potential is now

Q= —-kpTVw(z,T)
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Eliminating z we can write the equation of state as
p=FkpTo(p,T).

Expanding ¢ as the power series of p we end up with the
virial expansion.

Ursell-Mayer graphs

Let’s write
Qn = /dm crn [Je )
i<j
= /d"'l TN H 1 + fz]
i<j
where

fij = f(ryj) = P00 —1

is Mayer’s function.

f(r)
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The function f is bounded everywhere and it has the
same range as the potential v. In general f is a small
correction as compared with the term 1. If v(r) = 0, then
f=0and Qn = =V ie. we end up with the
Maxwell-Boltzmann ideal gas.
We write Qn as the power series of Mayer functions f;;:
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fij Fri fmn +

Here

1
(ij) < pa1r1<z<J<N2N(N 1) terms

(ij) < (k) < (ij) # (kl) and only one
of terms (i5)(kl), (kl)(ij) selected,
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Graphs are build from the elements

Permutations of particles do not change the values of the
graphs, for example

///dr1dr2dr3f12f23=///dr1dr2dr3f13f23,

as we can see by exchanging the integration variables 7o
and r3.
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We classify the graphs:

e in coupled graphs or a clusters one can get from every
black dot (e) to every black dot following a chain of
lines (—).

e in uncoupled grpahs there are parts that are not
connected by a line (—).

It is easy to see that an uncoupled graph can be
factorized as the product of its coupled parts.

The sum of graphs of [ coupled points is called an
l-cluster.

We define ¢; so that it is the sum of all I-clusters, e.g.
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One can show that
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e y; tells the number of [-clusters.

{Vl} 141 =0 Vo =0 v3 =0

() (N Z lyy | restricts the number of the integration

varlables (black dots ) to N.

NI
. H " tells how many ways there are to pick the
clusters from the set of N points.
e Everyone of the possible y;! permutations of the
l-clusters gives an identical contribution and must be
counted only once. That’s why the divisor ;! in the

factor ‘fj—,
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We end up with the cumulant expansion of the grand
canonical partition sum:

Z(T,V,p) = exp [Z l—l, glql] :

=0

Virial expansion

In the cumulant expansion every g; is proportional to the
volume V. We define the cluster integral b; depending
only on temperature so that
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Now

w(z,T) =

Zflbl
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For the density we get

We solve £ as the power series of the density p, substitute
it into the expression of w and collect equal powers of p
together and end up with the virial expansion

p=kpTw(z,T) = kgT[p+ B2(T)p* + Bs(T)p° + - - ].



The virial coefficients By, (T") are now functions of the
cluster integrals {b;(T)|l < n}, e.g.

1
BQ(T) = —b2(T) = 5 /dr [1 — e—ﬁv(r)]
Bs(T) = 4b% — 2bs

By(T) = —20b3 + 18bybs — 3bs.

Second virial coefficient

We suppose that

e the interaction has a hard core, i.e. the interaction is
strongly repulsive when r<o.

e on the average, the interaction is attractive when
rZ0, but the temperature is so high that fv(r) < 1

there.
Now
o—B(r) 0, when r§a
1—pu(r), when rlo,
and
oo
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a = —27r/ dr r*v(r) > 0.
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With these approximations we end up with the van der
Waals equation of state.

For hard spheres the virial coefficients can be calculated
exactly. Denoting

we get
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Low density gas
We write

N-1
Qn = /drl--'/derle—ﬁsz Y x
/drNe_ﬁZjv_lv(”N).

With the help of Mayer’s functions this is

N-1
exp l—ﬂ Z Uz’N] =

N-1
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Choose randomly two particles, ¢ and j say. Now

e the function f(r;y) deviates from zero only in the
range of the interaction.

e the term f(r;n)f(rjn) can deviate from zero only if
the particle j is in the range of the particle ¢ (the
particle N must also be in that range).

o the probability that the particle j is in the range of
the particle i is %

e if the particle j is in the range of the particle i, then
the integral over the variable ry is o 1, since the
function f has a short range.

We see, that
N-1 N-1 N2
/drN ; Frin) f(rin) ; Z=0 (7) .

In the low density limit we get

/drNe_’gE?_lv“" = V+ (N - 1)/d7'f(r)

()

V+(N—1)/drf(r).
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Iterating we have
QN = /d""l“'/d’l“N,gefﬁzlf vii
[V+(N—2)/drf(r)] y
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i.e. in the low density limit

On ~ VN No [ dr 1) Np [dr f(r)

= QVez

Here Q¥ = V'V is Q for the ideal gas.
Since the canonical partition sum was

1

ZN = W%NQN’

the energy can be written like

F(T,V,N) = —kgTlnZy
N2kgT

2V

FO(T7V7N)_

/dr f(r)

where Fo(T,V, N) is the free energy of the ideal gas. The
equation of state is now
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Comparing with the virial expansion we see that the

second virial coefficient is
1
: /fdr[l__e—ﬁqu.

B2=—%/drf(r)=

Correlation functions

Static linear response
Let Hg be the Hamiltonian of a system in the equilibrium
and 1

5 — —BH,
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the corresponding density operator. We disturb the
system with external time independent fields a,, which

couple to observables A, of the system:
A =My~ Auta.
a

The corresponding density operator is
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when we suppose that ﬂo, /ia and /ig commute.
We define the static linear response function xop so that

B 1.0 109z

Xop = dag B dag Z Ba,
1 ¥z 1 97 oz
" BZ Banbaz BZ? Bay dag

8(Aads) =8 (4e) (4s)-

We can thus write

where
Xap =
= (0dabig).

Notes:

® Xop tells how much the expectation value of the
observable A, changes when the observable A is
influenced by one unit of disturbance.

e The response functions are related to the correlations
of the fluctuations of obsAervableAs. The correlation
Cap of the observables A and B is defined to be

Cap = <5A 6B>,

where 64 = A — </Al> is the fluctuating part of the
observable A.

6A,644
calculated in the limit {a, = 0}. The responses xag

are determined, in the limit of infinitesimal
disturbances, by the undisturbed density matrix pg.

e The correlation functions < > can be

e The theory of linear responses can be generalized for
dynamic disturbances.

e In spite of the possible incommutability of the
operators Ag, Ag and Hy the results are exact in the
classical mechanics. In quantum mechanics the
incommutability must be taken into accout. One can
show that the response function can be written as

Xap = <5A(5A’3 )5Aa> :

where the operator AB) is

Particle density
Let 71,72,...,7n be position operators, i.e.
Fip(r1, ...

,TN) = 1(T1, ..., TN).



The number density operator is

= Z&(r — 7).

For example, in the pure state 1(r1,72,...,7N) We get
(p(r) /d""l /d"'z 1/d7“z+1 /dTN
|w(r1, T Ty Tig 1y e s TN) [

When the particles are identical bosons or fermions |¢|? is

symmetric under permutations r; < 7, S0

=N/drg---/drN|¢(r,r2,...,rN)|2.

We supposed that the system is closed into the volume V'

and v normalized. Then

/V<,s(r)) ir = N/dm---/drN|¢(r1,...,rN)|2
N

In general, we have

[ o) =

SO we can write
N = / dr p(r)

Density-density response function
We divide the volume V into elements AV,.

\%

dr pA(I") = N,
AV,

be the number of particles in the element AVj,.

Let

N, =

Let a, be a field coupling to N,. The Hamiltonian of the

system is
A= f—Y Naaa
Ho-3 .
[e%
In the continuum limit we get

A = Hy- / dr p(r)a(r)

dr p(r)aq
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Thus the field —a(r) is a 1-particle potential.

The state sum Z can be thought to be a function of

variables {a, } or a functional of the function a(r):
Z =Z({aqa}) — Zla(r)].

continuum

Now 10InZ
- n
N, > ==
(%) = 5 B
and in the continuum limit
1élnZ

p(r) = (p(r)) = E m-

We define the density-density response function x so that

6<Na>

XaB = 95 ~ [ <6Na6N5>
and in the continuum limit
8 (p(r))
N
X(Ta r ) - (5&(‘1"')
R B(p(r)ap(r'))

Here
op(r) = p(r) — (p(r)) = p(r) — p(r)
is the fluctuation of the density.
The approximativity of the last formulas is due to the
non commutativity the Hamiltonian with the operators

0p(r) and 6p(r").

Pair correlation function
We restrict to homogeneous matter. Then

(p(r)) = p(r) = p.

Let us consider the function

(Frpr)) = 32050 = #)ote’ = #2)
ya
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= o(r—r1"){p(r))
+Z (6(r — ;)

7#J

(r —73)8(r" —7;))

(r' —75)).

We define the pair correlation function g(r — r') so that

(p(r)p(r')) = pd(r — ') + p*g(r — )

or
2

PPg(r—r') = (5(r—#)5(r' — 7).
i#]

It can be shown that in a homogenous pure state

Y(r1,...,7N) of N particles one has

NN-1

p
/dr;,»---/drN|1/)(r,7",r3,...,rN)|2.

glr—r) =

We see that



e g(r — ') is proportional to the probability for finding Now
two different particles at the points r and r'.

5a)t
e since simultaneous events far away from each other 9p(q)

cannot be correlated we have

tim (A(n)BE)) — (Awm) (B)

[/ dr e_iq'rtiﬁ(r)] T

/ dr 9T §5(r) = 5p(—q),

T
| e so S(q) is a real and non negative function of the variable
so q.
lim g(r—7')=1. According to the definition of the response we have
7 =7 =00
The function 6 (p(r)) = /dTI x(r —r")da(r").
G (ry,19) = p2g(r1 — 1r2) TIts Fourier transform is

is called the pair distribution function. Distribution dp(q) = x(q)da(q).
functions of higher rank are defined analogously. In "
particular, for a pure state the distribution function of We suppose that da(r') is constant. Then we can
rank (degree) n is interprete that

da(r') = éu
(n) —
G (ry, T2, Tn) = is a change in the chemical potential, so

NN -=1)(N=2)---(N—n+1) x

N ! ! :
/d’r‘n+1 e -/drN|¢(r1, PR TR 7R P ,’I‘N)|2- 5p(’l“) - 7 - 6H/dlr X(T -r ) - (SH(}I—IE(IJX(q)'
The pair correlation function (like the higher rank We see that
functions) can be generalized for nonhomogenous . 1 (ON
systems, for example, in a pure state we have (}13(1) x(q) = v E _—
p(r)p(r)g(r,r') = It follows from Maxwell’s relations that
N(N — 1)/dr3.../drN|w(r,r',r3,...,rN)|2. (8N> 1 .,
a =—=N KT,
ow/)ry V
Compressibility where k7 is the compressibility
In the classical limit the density-density response function 1 70V
is br=—— (o=
Vv ( Op ) T,N
i _ ~ Al l
Xoor) = 5pmRE) Thus we get

= B <(Ap(T)A—Ip)(p(T )2— p)) lim x(q) = p*kr

= Bp(r)p(r)) — Bp o !

= Blpd(r—7")+p’g(r—1")] - Bp°

oo ) ( ) 1+ p/dr [g(r) — 1] = pkpT k.

or

_m! — _m! 2 _oml
X(r=77) = ppor =) + fp7lg(r — ') — 1], Fluctuation dissipation theorem
Its Fourier transform We suppose that fields a4 (t) are time dependent. Then
also the Hamiltonian

x(@) = [ dre 9Tx(r) () = By~ 3 Agan(t)

is
x(q) = Bp + ﬂp2/dr e—i(I"’“[g(r) —1]. iz;t)ends on time.
Arp _ i Hot j—% Hot
The structure function S(q) is defined so that A(t) = en 7ot Aemm 0
1 be the Heisenberg picture of the operator A. We use the
Sa) = + (63(@)65(0)) notation 0
(- =Trpg---

_ —iq-T
= l+p / dre”" 1" [g(r) - 1]. for expectation values in undisturbed states.



It can be shown that in the linear limit one gets

§AL(t) = Tropt)A,
= dt' xap(t —t")as(t'),
> [t xaslt =t

where

Xas(t 1) =+ 6~ 1) {[Aa(t), As(0)] )
Because

[s4.08] = [4-(4).5 - (B)] = [4.5],
we can in fact write

Xap(t — t') =

20— ) ([34a(0,6420)] )

i.e. the response function depends only on the fluctuating
parts of the operator.
The Fourier transform with respect to time is defined as

/ dt ezwt )

The inverse transform is then

1 > .
t) = o [wdwe"“txag(w).

We rewrite the response function as

Xaﬁ

Xap(

Xap(t —t') = 2i0(t — t')xq5(t — 1),

where . o
xea(t =) = 2= ([Aa(®), As@)] ) -
It can be shown that xs(w) is analytic in the half plane
Imw > 0 and that
[

where {0 stands for an infinitesimal imaginary number.
The static response or susceptivity is

/ do X:)Izﬁ

This is the microscopic form of thermodynamic response
functions.

The time dependent correlation function Copg(t —t') is
defined as

Xaﬂ )

Xaﬂ w' —w—140’

Xaﬁ—Xa[B W—O

Coplt —t') = <6Aa(t)6fig(t’)>0 .

So we can write the response function like

Xas(t ~ ) = % 0(t 1) [Cas(t — #) — Cpalt’ ~1)].

One can show that in the frequency space one has

2h
Cop(w) = 1= c—phw Xop(W)-

This relation is called the fluctuation dissipation theorem,
since

e the left side, Chp(w), describes spontaneous
fluctuations of the system.

e it can be shown that an external field oscillating with
the frequency w loses energy with the power
WXas(w), i-e. the right side is associated with
dissipations.

Pair correlation function and equation of state
We consider homogenous matter. According to the
definition of the pair correlation,

D (8 —#))8(r' — 7)),

i#]

prg(r—7') =

we have in a classical system

—Z/dI‘ér—r, v —r;)e PH

i#]

|
= —Z drl---/dri_lx
@n

/dTi+1“‘/d7'j_1 X

- /drg---drNefﬁZiq i
Qn

The pressure is

pg(r—r') =

_ OE
P=5v

where
E = (H)

is the expectation value of the energy.
We think that the system is bounded by an L-sided cube.
then

_ 0B __ 10
P="%v = 7302 5L
and we can write
_ OE . Erayeg —Er
Vo= -L B_L = Ll el

—; (Hp4e — Hr),

where H,, stands for the Hamiltonian in a AL-sided cube
and E)p, for the corresponding expectation value.
When we restrict to linear terms in € we obviously have

2
_HL>HL + 0(6 )

Erat+e = Br + (Hpate

Here (-- -}, means that the expectation value is
evaluated in a L-sided cube with the weight e =#Hz,

The Hamiltonian Hyp,(; ) deviates from Hp, only in that
the coordinates z;, y; and z; can have values between

[0, L(1 + €)], while in Hy, they are restricted to [0, L]. We
rewrite the Hamiltonian Hy 1) with the help of the
scaled variables




like

HL(1+€)

2
=
+
™
<
Qﬁ\

. Here we have used the relation
= —ihV/,-/ = (1 + €)p

Since the new, primed, coordinates span the same range
as the originals we can replace the new ones with the

originals.
Now
(Hroo —Hi)p =€ |=2(T) + <Z Tijv'(rij)> ;
i<j

where (T') is the expectation value of the energy. For the
equation of state we get

3pV =2(T <Zr” r,J >
i<j

Now the kinetic energy is same as for the ideal gas, i.e.

(T = gNkBT.

The latter term is evaluated like:

<Z7‘ijvl(7‘ij)> = L(NQ_I)

i<j

(r12v'(r12))

N(N—l)/ ,
= ———= [ dridrariov (r12) X
20N 1drar120' (r12)

/d’f‘3 - drye P i )

v
= Ep2/d7“127‘121)’(7"12)9(7'12)-

Thus the equation of state is

2
pV = NkBT—W—Vp /drr v

The internal energy of the system
OlnZn 3 1 99N
= - NkgT —

o8 27" T QN 9B
can also be expressed with the help of the pair
correlation. Now

1 00w
QN 0B

E=-

= —— /dm d’f‘N'l)(Tkl)
k<l

_B Ei<j o(ri;)

1N(

= 2 /d’f‘ld’l"zv(Tlg) X

/drg---drNe_BZKi vlris)

1
-3 p2/d7"1d7“20(7‘12)9(7‘12);

or the internal energy is

E= % NkgT + 2xV p? /dr r?o(r)g(r).

We see that the thermodynamic properties of the system
are determined by the pair correlation.

Approximating the pair correlation

To evaluate the state sum Zy we have to perform
3N-fold integration. Correspondingly, for the pair
correlation, or for the pair distribution

G (rn) = p’g(ri2)
= NV -1) /d'r'3 cedrye”” Yics ”(”J'),
Qn

we need 3N — 6 integrations. In macroscopic systems N
is of order 1023, so the evaluation of both of them is
equally tough. Like for the partition sum one can develop
approximative methods for the pair correlation.

We rewrite G like
N(N -1
G(z)(rl,rz) — ¥/dr3---dr1v x
Qn

e*ﬂ Zi#l v(ﬁi)e*ﬂ El<i<]‘ v(rij) )
Its gradient with respect to r; is
N(N-1
VlG(2)(’r'17’I"2) = —% /d’r':;“‘d"'NX
N

lvlv(ru) + Z Vlv(rli)] X

i>2

e—ﬂziqv(m)'

We employ the three body distribution

NN -D(N-2)
QN
/dr4 edrye P Laies V)

G(3) (T17T2aT3) =

Now we can write

VlG(Q) (7‘1, 1‘2) =
—ﬂvw(ﬁz)G(z) (T1,7'2)

—ﬁ/dT3V111(7"13)G(3)(7‘1,7“2,7“3)-

This equation is know as the Born-Green equation.
Repeating the procedure described above one can derive a
relation which expresses V1 G®) (r1,72,73) as a functional



of the four body distribution G). Continuing further we 3. new g(r) is now
would get a recursive chain of relations binding together

the n- ja n + 1-body distributions. To exploit the g(r) = e PYTBO),
hierarchy of the relations we have to cut the chain
somewhere. 4. if the new and old ones deviate from eachother
In the Kirkwood approximation one supposes that remarkably we continue from 2.
G® (r1,72,73) — G (r1,72)p, We divide the graphs in the expansion of B(r) into two
classes:
when 73 moves far from the points 1 ja r2. Since G® is
symmetric with respect its arguments one can write e nodal graphs are such diagrams that can be splitted
into two or more uncoupled parts by cutting them at
G(3)(7‘1, Ty, T3) = some black point.

1 .
p_3 G(z)(ﬁ, Tz)G(Q) (r2, 7“3)G(2) (r3,r1).

This is know as the Kirkwood approximation or as the
superposition approzimation

One can also derive diagram expansions for the pair
correlation. Since g(7) is a non negative function it can
be written as

g(r) = e~ AU(N+B)
e bridge or elementary diagrams cannot be separated in
We define the graphical elements: parts by cutting them at any black point.

o' & free variable r

We rewrite the pair correlation as

r P g(r) = e PUOIENOILED),
= /drl h(r,r)h(r' 7). where N(r) is the sum of the nodal diagrams E(r) the
sum of the elementary diagrams.
In the relevant graphs The HNC (HyperNetted Chain) approximation assumes

. . r - . that E(r) is insignificant, i.e.
o there are two white points o' and o together with

one or more black points, " g(r) ~ e BUMFN(),

e there is no direct link (—) from one white point to

. ) It can be shown that the nodal diagrams can be summed.
the other white point.

They satisfy the Ornstein-Zernike relation

e there is a path from every point to every other point,
i.e. they are connected. N(r) = p/dr'[g(|r —7']) =1 —=N(jr —7'|)][g(r") —1].
One can show that B(r) is the sum of all these graphs. . . ) ) .
Via Fourier transformation we end up with the algebraic
relation

where S(k) is the structure function and

Thus this graph expansion of B(r) depends on the pair Nk)=p / dre— kTN (r).
correlation g(r). Provided that we can sum the graph
expansion, we can solve g iteratively:

Jastrow’s theory
Although the previous cumulant expansion and
2. evaluate B(r) using the graph expansion. approximative methods for the pair correlation are valid

1. guess g(r).



only for a classical system it turns out that these methods
are useful also in quantum mechanical systems.

We consider the ground state of N identical particles (the
temperature is T = 0), so the system is in a pure
quantum state V.

We suppose that, due to the interactions, the particles are
strongly correlated, i.e. the independent particle model is
not applicable. A good guess for the ground state wave
function is then the function, known as the Jastrow trial,

IT  rlri—riD.

1<i<j<N

U(ry,...,rN) = ®(ry,...,rN)

Here the pair correlation

fij = f(lri —rjl)

describes the mutual correlation between the particles.
Since the factor
I £

1<i<j<N

F =

is symmetric with respect to the exchange of particles the
possible Fermionic character is embedded into the
function ®:

e for bosons

&(ry,...,rn) = 1.

e for fermions @ is, for example, the Slater
determinant of N non interacting particles and thus
antisymmetric with respect to the exchange of
particles.

When @ takes care of the statistics we can suppose that
in the ground state F' is real (in fact we could assume
that F' is positive since the ground state wave function
has no zeros).

The Hamiltonian operator of the system is

H——ih—zvulzvqr—r-p
- izlzm" 2 & oI

We evaluate its expectation value in the state
U =Fo.

One can easily see (integrating by parts) that
/dm ---d'r'Nlll*V?\Il =
i/drl---drN|<I>|2V§lnF2
—i /drl---drNF2v§|<1>|2
+/dr1---drNF2q>*v§<I>.

This relation is know as the Jackson-Feenberg energy
form.

Employing the pair distribution

N(N

-1
7|‘I’)) /'d’l"3"'d’l"]\f|‘I’|2

g(|7'1 _T2|) = p2 (‘IJ

and writing
2
j
we get for the expectation of the kinetic energy

Ui
i

th

- — V2
< 3 2m vz >
=1

1 B )

(T)

h2
= —NP% /dTg(T)V2U(T)+Tq>7

where Tg is composed of the Fermionic terms
[dri---dryF?V?|®|? and [dr;---dryF2®*Vi9.
The expectation value of the potential energy will be
correspondingly

(v) = <% Z%’>

i#]

1 1
i#]

= Np%/drg(r)v(r).

Thus the energy per particle is
2

€= —h—p/drg(T)Vzu(r) + %p/drg(r)v(r) + %Tq).

8&m

Supposing that the particles are bosons the pair
distribution can be written as

p2g(r12) = N<(é’\|7 \Il)l) / drg - - dryedei<s "
This is exactly the same as in the classical system. Now,
however, the potential term —fv;; is replaced with the
correlation factor u;; =In ffJ So, we can apply diagram
expansions of classical systems. In particular we can write

g(r) = eUMHEN+BE)

where N(r) is the sum of the nodal diagrams and E(r)
stands for the contribution of the elementary diagrams.
In HNC-approximation we write

g(r) = e MIN),

A corresponding approximation can be derived also for
Fermionic systems but then the nodal and bridge
diagrams are not composed only of black and white
points and connecting links. That approximation is called
the FHNC (Fermi HyperNetted Chain) approximation. In
the following we consider only bosonic systems.
Unlike in the classical systems the function u(r) is now
unknown. We use the HNC equation to eliminate v from
the energy expression. For one particle energy we get

€ =

_Sh_m p/drg(r)V2 ln g(r)
2
+8h_m p/drg(r)VzN(r)

+%p/d7'g(r)v(r).



Since the functions N(r) and g(r) are related by the
Ornstein-Zernike relation

N =p / dr' [g(r') — 1 = N()][g(r — ') — 1],

one can take the energy € as a functional of the pair
distribution g(r) only. It turns out that in fact a more
convenient variable is 1/g(r), so

€ = €[y/9].

As well known, the ground state wave function is that ¥,
whose expectation value

(H) =

U*HY
<IIJ| \I/) /d’l"l d’l"N

is minimized. We now seek the minimum of the
expectation of the Hamiltonian among all the functions of
Jastrow form. Equivalently, find out such a ,/g, that the
energy €[,/g] attains its minimum. A condition for the
existence of the extremum is that the variation

de = e[\/g + 0+/9] = e[/9]

vanishes up to linear order in §,/g.
A straightforward calculation shows that

5e = / dr L[\/g(r)] 5+/9(r),

where

Llvg(r)] = ———V%/ ) +u(r)Vy(r) + W(r)y/g(r).

In order de to vanish independent on the variation 6,/g,
the coefficient L must vanish, i.e.

—h—m V3V/g(r) +v(r)\/g(r) + W(r)y/g(r) = 0.

The function W (r) is the so called induced potential. Its
Fourier transform is

W(k) = p/dre_ik'TW(r)
_ RE2(S-1)2(25+1)
T 2m S? '

Although the above Euler-Lagrange equation for /g looks
like a Schrédinger equation at 0 energy it is

e strongly nonlinear since the induced potential W
depends (nonlinearly) on the structure factor S,
which in turn depends via the (linear) Fourier
transform on (,/g)*.

e solvable only numerically. There are several solution
methods but they all are iterative.

e an equation for the ground state only. Even if there
are more solutions the solutions associated with
other energies have no physical meaning.

In the Jastrow theory the excited states are constructed
explicitely. For example

e let every particle in the system have the momentum
hk, i.e.

e excite the particle ¢+ with the operator ekt

e every particle is excited with the same phase, i.e.

o if the ground state is ¥y the excited state is

E e“‘c"‘ i
|"L—1

= p(k)¥o,

T, =

where p(k) is the Fourier transform of the density
operator

One can show that for bosons this kind of collective
excitation ¥y in the long wave length (small wave vector
k) limit is energetically most favorable.

The excitation energy can be obtained evaluating the
expectation

et S

A straightforward calculation shows that
n’k?
2mS(k)’

when Ej is the energy of the ground state ¥y. The
excitation energy is thus

E, =Ey+

R k2
° = 2mS(k)’

These kind of excitations and corresponding excitation
energies are called Bijl-Feynman ecitations.

e, = Ep —

Density fluctuations and correlation
length

Let’s consider the canonical partition sum
Zn = e PV = Trye PH,

where Fy is the free energy. We divide the volume into
elements V,,, whose particle numbers are

N,=0,1,2,....
Let (N4, N,) be an operator satisfying

|N>7 ifNalN):NalN)

8(Na, Na) |N>={ 0, if No|N)# N, |N),

i.e. §(N,, Ny) is the Kronecker delta function. The
identity operator operating in the volume element « can
be written as

:E: 8(Ny, Nao)
N,=0



The identity operator of the whole system can be written,
for example, as

P- HI=H[§: 5<Na,Na)]

No=0

= Z H‘S(NaaNa)'

{Na} @

Here 3y} stands for the summation over all possible
configurations, i.e.

[o o 2EENe o}

Z[...]z Z Z e[
{N.} N1=0 N2=0
The partition sum is now
ZN = TI‘Ne_Bﬁ
= Ten Y [[6(Na, Na)e 2
{Na} @
= Z Tr H(S(Na,Na)e_ﬂﬁ
{Na} @
= Z e=PEN
{Na}
Here
e PPN — Ty I_I(S(Z\ATa,Na)e_ﬁH
«@
= Trynge”

where Tryy_} means that in the evaluation of the trace
the summation is over all microscopical degrees of
freedom keeping, however, the particle numbers N,
constant and fixing for the total number

N:ZNa.

The function B B
Fn = Fn(T,V,{Na})

is the free energy or the reduced free energy of the
configuration {Ng}.

The quantity e #F~ is proportional to the probability for
the configuration {N,}. Thus the most probable
configuration is such where the reduced free free energy
Fn(T,V,{N,}) attains its minimum.

Density functional theory

In the continuum limit the configuration {Ny} is
described by the density p(r) and the reduced free energy
will become a functional of the density:

Fy = Fy[p].

Now all the microscopical degrees of the freedom are
reduced to the single density distribution. This kind of
model is call the density functional theory.

Normally the reduced free energy cannot be calculated
exactly. A phenomenological method is the Local Density
Approzimation, LDA):

o the reduced free energy is the volume integral of the
free energy density fn.

e the free energy density at every spatial point depends
only on the local particle density and its low order
derivatives at that particular point.

Thus the energy functional of the system is

Fn[p] = /d’r‘ Inlp(r), Vp(r),VVp(r),...].

If there is an external potential u(r), there is the
additional term [ dru(r)p(r) in the functional.

As we noted above the most probable configuration
corresponds to the minimum of the reduced free energy.
We restrict to homogenous systems so that the constant
density po minimizes the functional Fi[p]. Let

ép(r) = p(r) — po

be a small deviation from the constant density. The
simplest model for the variation of the energy functional is

En[op] =
[ ar[fo+ 5 @0+ 5 12 (T000

where fo, fi and f2 are constants independent on the
position 7 (but can depend on the temperature and the
constant density pg). In the expansion

e there is no linear term in the variation dp, since
according to the hypothesis py minimizes the energy.

e due to the minimum condition the coefficients f; and
f2 must be positive.

e the gradient term (Vp)? favors slowly varying
densities, so the wave lengthts of the density
fluctuations cannot be arbitrary short. At points r
and ' close to each other the deviations dp(r) ja
dp(r'") are roughly the same.

e physically the gradient term can be motivated by the
tendency of the stochastic thermal motion to smooth
down the density differences in close by volume
elements. Thus the factor f» depends on the
correlations of the particles in volumes close to each
other.

Since the particle number is constant we have

ON = /dr dp(r) = dp(g=0) =0,

and, with the help of the Fourier transform, the free
energy can be written as

. . 1
Fy=F%+ —

57 2 (it f20%)op(@)dp(—q),

where E'q means that the term g = 0 is not to be
summed.



Since the variation dp(r) is real its Fourier transform
satisfies
p(—q) = dp(q)",
s0
p(@)dp(—q) = 16p(q)|*.

The physical meaning of this term is that (§p(q)dp(—q)),
as we recall, describes density correlations.
the probability for the fluctuation dp is now

Plép] « e BFn

1
o exp |~ oy ;' (f1 + f28*)|6p(@)]?)

Correlation length

Since the distribution P[dp] derived above is of Gaussian
shape one can directly read from it the correlation
function

kgTV
1) op(— _—
(0p(q)dp(—q)) it o’
_ kgTV 1
o @+
where
Q= h
Cc f2'

The density-density response x(q) was defined so that

x(@) = $0S(@) = 1 (Gola)in(-a)).

when S(q) is the structure factor. So we get

(q) = 1 1
X fo ®+ qf'
Its inverse Fourier transform is
11 -y
x(r) = fa pr—_— )

The parameter

_1_ |~
é-_qc \/;

is the correlation length.
Since we had limg_,o x(g) = p*>k7 we must have

1
fl - pZIiT’

SO 52
fr=——.
pAET

The pair correlation h(r) = g(r) — 1 can be written with
the help of the density-density response (excluding the
autocorrelation proportional to d-function) as

hr) = Bipzxm

We see that

kBTKZT 1 _r
h(T’) = 62 me /§

Note The results are characteristically qualitative
because they are derived using a nonmicroscopic model.

Scattering in medium

We consider the scattering of photons or massive particles
in a medium. One can show that the intensity of the
elastic scattering is proportional to the structure factor,
i.e.

I(k,q) o 5(a) = 5 (59(a) $9(~a)).

Here k is the wave vector of the incoming particle and g
its change due to the scattering, i.e. the wave vector of
the scattered particle is

K=k—q
Since the scattering is elastic we have
k' = [k|.

The intensity of the inelastic scattering in turn is
proportional to the dynamic structure factor:

I(k; q,w) < S(q,w),

where g the change in wave vector and fiw in the energy.
When the temperature approaches the critical point from
above the isothermal compressibility k7 diverges, i.e. an
infinitesimal change in the pressure causes an finite
change in the volume. Then

1
fr= 2 criQ 0.
PoRT it
On the other hand, there is no reason to assume that, for
example, the correlations would become independent on

the wave vector at the critical point, as would happen if

62
f2= P2 K eritieal

point

That’s why we can suppose the correlation length &
diverges at the critical point.

Consider elastic scattering of light. When the scattering
angle is 6 the change in the wave vector is

0
= 2k sin —
q sin o,
the wave length being

A= —.
k
We see that the intensity is

1 1
(0.q X .
f1+ faq? sin? £ + ( A )2

1(9)
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Then at the critical point
1
24

9
sin” 3

1(0) o ;
i.e. the scattering intensity is strongly peaked at forward
directions and the total cross section (o [ dQI(6))
diverges. Thus the radiation cannot pass through the
medium: in the vicinity of the critical point tranparent
matter becomes opaque. The phenomenon is called the
critical opalescence.

Discrete interaction models

We first consider interaction between atomic spins in a
solid. Assuming that the atoms are bound to their lattice
sites the spin degrees of freedom are independent on other
degrees of freedom, that is

Hx Hspin + Hother-
Now the state sum can be factorized:
Z=Tre?

H
~ ZspinZOther -

In the case where the factorization is not complete one
can define the spin Hamiltonian

Hspin = H(317327"'73N) :H({s’l})

1
= —5Mhn Trig, e~ "

Here Tryg,} means that the trace is evaluated keeping the
spin configuration fixed. The total partition function is
7 = Trspine*ﬁH({si})’
where now the trace is over spins.
In the spin model

e the most important interactions are between nearest
neighbours.

e the interactions are associated with the links
connecting the lattice points.

e the spins associated with the lattice points are the
dynamical variables.

In some cases it is possible to construct spin models also
for continuum systems by discretizing the field variables.
We denote the lattice points by 4, j, .. .. If the spin
quantum number of the particles in the model is s, the
state sum is

7 = Y eputsd
{01}
= Z Z o BHUS:Y).

Heisenberg’s model
In the external field By the Hamiltonian according to the
Heisenberg model is

1
H = —5 ZJijSi -7 —’)/Bo ZS,
ij i
when the magnetic moment of the particles is

i = 78i.

We use notation < ij > for such spins 4 j, which are
closest neighbours of each other and count this kind of
pair only once. We suppose further that the interactions
do not depend on the lattice sites, i.e. J;; = J. Then

HZ—JZS,"SJ',

<ij>
when the external field is By = 0.
Ferromagnetic coupling J > 0

The interaction favors parallel spins. One can easily see
that the state
@i~

where the spins at all lattice points are parallel is the
ground state.

Let z be the coordination number of the lattice (the
number of nearest neighbours at each lattice point). For
example, in the cubical lattice 2 = 6 and in the two
dimensional square lattice z = 4. It is easy to see that the
ground state energy is

- 8) 5

=|s,s,.

Ey=—N g Js2.

Since the scalar product s; - s; is invariant under
rotations the Hamiltonian of the system is also
rotationally invariant. The ground state

e does not obey the symmetry of the Hamiltonian. It is
said that a spontaneous symmetry break has occured.

e is very degenerated. Rotating all spins equally we
end up with a state with the same energy.

Antiferromagnetic coupling J < 0

The interaction favors neighbours with opposite spins.
Supposing that opposite configurations were possible for
all nearest neighbours the classical ground state energy

were P
Ey=N 5 Js?.

This kind state of alternating spins,
®|az—:ts [s,—8,8,...),

is, however, not a quantum mechanical eigenstate of the

operator
—J E 8;* 8j
<ij>

= —% > [(si+s5) =57 s3]

<ij>

H =



since the spin pairs are not coupled to eigenstates of the
operator

32

The correct eigenstate can be solved only in the one
dimensional system (so called Bethe’s Ansatz method).

Ising’s model
We simplify the Heisenberg model pyprestaictigeinbe spin
aeeaitnimonbintber 1o easais. L hen

H=-J Z 00 —]’LZ(H,

<ij>

where o; = £1 and h is proportional to the external
magnetic field.

The Ising model can be solved (i.e. the partition function
evaluated) exactly for one and two dimensional systems.
Analogical to Ising’s model are for example

e binary mizture composed of two species of atoms, A
ja B, where each lattice point is occupied by either A
or B type atom.

e lattice gas, where at each lattice point there either is
an atom or is nothing.

Potts’ model
We let the spin take ¢ different values,

o,=1,2,...,q,

but only the neighbouring spins in the same spin state are
allowed to interact, i.e.

H=-J Z 5(Ui,0j).

<ij>

We see that this Potts model reduces to Ising’s model
when ¢ = 2.

When the coupling is ferromagnetic (J > 0) the ground
state is such that every spin is in the same state. The
ground state is thus g-foldly degenerated. Hence at
certain low temperature the system transforms to a phase
where one of the values of the variable is dominant. The
number of these ordered phases is g.

Spin glass

In the spin glass either the positions of atoms or their
interactions (or both) vary randomly. For simplicity we
assume that the spin glass Hamiltonian is of the form

H=- E Jz'jUi(Tj,
<ij>

where the couplings J;; are random quantities.
The simpliest choice is

J,'j =+J

the sign being stochastic. This is known as Ising’s spin
glass. In a system of this type there are frustrations i.e.

going around a closed path along links setting the spins
so that the energy of each link is minimized the last spin
direction will differ from the one we started with. That’s
why all interactions cannot be minimized simultaneously
and the ground state cannot be determined.

XY model
We confine the spins in the Heisenberg model to a two
dimensional plane, i.e.

8; = 8iz? + SiyJ-

When the spins are treated classically the XY model
Hamiltonian can be written as

H=-J Z cos 85,
<ij>
where 6;; = 6; — 0; is the angle between neighbour spins.
If the coupling is ferromagnetic, J > 0, all spins are
parallel in the ground state. The we can assume that at
low temperatures the angles 8; vary slowly as a function
of the position. Thus one can write

O(r; +ai) — 0(r;) zaw
and )
.. 0N 1 2 ) _1 2 @
cos()”~1—20,~j~1 5 @ (&v .

In the continuum limit we get the field theoretic model

HmE0+%K//da:dy|V0|2.

Vertex models

In the vertex models the dynamical variables are
associated with the links and the interactions to the
lattice points common to the links. As an example we
consider models for crystalline phases of water (H,O) (ice
models):

e in the ice the oxygen atoms correspond to the lattice
points.

o the links binding oxygen atom pairs are hydrogen
bonds.

e the hydrogen bond is unsymmetric: the hydrogen ion
is always closer to one of the atoms.

e the state of the hydrogen bond can be described by
the two valued spin variable o;; = £1.

o the hydrogen ions must satisfy so called ice
conditions: each oxygen atom must have exactly two
hydrogen as neighbours. The water molecules of the
ice are thus binded together by weak hydrogen bonds.



We approximate the ice structure with two dimensional
square lattice. There are 6 possible link configuration for
each lattice point. We have a so called 6 vertex model.

| l l

—T‘ T T
—Oe Oe Oe
I t t

Let 6; be the ice condition for the lattice point 4:

9, — 1, condition satisfied
*7 1 0,condition not satisfied.

A suitable Hamiltonian for the system is such that the
energy of the forbidden configurations is infinite, e.g.

H=lim S U1 -6).
U—o0 7

Now the energy of an allowed configuration is zero. One
can also associate different energy ¢, with each vertex
type k. The the total energy of the lattice, in an allowed

configuration, is
6
E = Z Nkek.
k=1

Here Ny is the total number of the k type verteces.
One can easily see that the state sum is

7 = Z e_ﬂZLl Nex HHZ

{0} i



