Phase transitions

Lee-Yang theory

A phase transition happens at an exactly determined
temperature which depends on the density, pressure and
other intensive properties of the system. Since the state
variables behave differently on each side of the transition
point the partition sum must be non analytic at the
transition point. The energy spectrum {E,} of finite
number particles in a finite volume is discrete so the state

sum
n

is a positive and, on the positive real axis § > 0 and in
the neighbourhood of it, an analytic function of its
argument . In this kind of a system there can be no
sharp phase transition point. Phase transition can thus
occur only in the thernodynamic limit where

N
V — o0 and N — oo but v — p = constant.
The model by Lee and Yang explains how the analytic
state sum develops toward non-analytic form when we
approach the thermodynamic limit. We consider a system
of hard spheres confined in the volume V. Let V4 be the
volume of one sphere. Then
v
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is the maximum number of spheres. The state sum

N
Za(T,V,p) = Y 2NZ(T,V,N)
N=0

is a polynomial of degree NV, of the fugacity

2= PP,
We use the shorthand notation
Z(2) = Zg(T,V, ).

Let &1,&, .. .,&N,, be the zeros of the polynomial Z(z).
Since Z(0) = 1, we have, according to the fundamental
theorem of algebra,

i z
Z(z) = (1 - —) .
1{*-g
Because Z(z) is real when z is real the zeros must occur
as conjugate pairs, i.e. for every root &, there must be
the root £ .

When we approach the thermodynamic limit the number
of zeros of the partition function Z(z) tends to infinity.
One can assume that the real axis remains clean of the
zeros excluding, maybe, some separate points. In the
vicinity of those points the density of zeros is very high
and the function Z(z) non-analytic.

Let’s suppose that the zeroes of the partition function
Z(z) close to the real axis condense on the curve C. The

function Z(z) is analytic on both sides of the curve but
its analytic properties are different on different sides.
When the zeros lying on the curve C' condense to

continuum we can write
2
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is the number of zeroes on the arc d¢ of the curve. The
density w(§) is o« N, « V' and so an extensive quantity.
From this expression for the partition function one can
clearly see that Z(z) is not analytic if z happens to lie on
the curve formed by the zeroes.

As an example we consider the state sum which in the
vicinity of zy behaves like

InZ(z) =

Here

Z(z) ~ ¢®*) cosh [% (z — zo)} ,

where ®(z) is analytic. The zeroes of the state sum are
then at the points

1
—), n=0,+1,42,....

§n:z0+z’b<n+2

Since
In Z(z) = ®(z) + Incosh [%(z - zo)}

is extensive the argument 7/b(z — zp) must be extensive.
The only possibility is that 1/b o« V. We denote

so in the thermodynamic limit

V — oo or b — 0 but vg = constant

we get
1 1 1
V InZ = V @(2) + v In cosh [% (Z — ZO):|
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v @)+ v Ing + (2 —2), 2>z

Because in the grand canonical ensemble we have

pV = kgTlnZ
0lnZ
N =
Tz

we see that now

PV = kpT®(z)+ — kpTV]z — 20| — kpT®(z0)
’UO zZ—20
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N = z(9 (2) +7TKzsgn(z—z0).
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We are thus dealing with a typical first order phase
transition where the density jump is
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Isings model

Practically the only exactly solvable models are the one
and two dimensional models by Ising.

We consider one dimensional chain of spins

it 4
1234--- N,

where we apply periodic boundary conditions, i.e. we set

ON41 = O01.

The Hamiltonian operator of the system is then
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where each spin variable can attain the values
g; = +1.

The state sum is
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We define the 2 x 2 transition matriz T so that

To’o” — eBJo’o"+%Bh(o’+o"),

where 0,0’ = £1. The state sum can now be written as
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Looking at the matrix

eBI+Bh  o—BJ
T =
( e BT BI-Ph )
we see that the transition matrix is symmetric. Thus its
eigenvalues

ME = b [cosh(,BJ) + 4/sinh?(8h) + e4BJ:| ’

are real. Let S be a orthoganal matrix diagonalizing T
(composed of the eigenvectors of T'), i.e.
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Now

and, due to the cyclic property of the trace,
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The logarithm of the state sum is

n [(X) + (A)"]
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Since in the thermodynamic limit, N — oo,

A=\
() ~o
holds we get
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Just like in the free spin system the free energy is
interpreted as the magnetic Gibbs function. Its value per
spin is

G kT
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The equilibrium values of other thermodynamic variables
can be calculated from the Gibbs function. In particular,
the average of the spin variable is
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The expectation value o is an order parameter of the
system: o = ( corresponds to completely stochastically
oriented spins whereas |o| = 1 corresponds to the case
where all spins are ordered themselves parallely.

The order parameter ¢ is analogous to the magnetization
M of the free spin system when h corresponds to the
magnetic field H. The susceptivity is analogically
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In the weak field limit A — 0 we get then

X

do 1 27
X = — = — kpT .
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When the coupling is ferromagnetic (J > 0) the system
magnetizes strongly at low temperatures. When the
external field is removed the system returns to the



disordered state o = 0: there is no spontaneous symmetry
break.

If the coupling is antiferromagnetic (J < 0) the
polarization is damped exponentially.

The one dimensional Ising chain is thus a paramagnetic
system without any phase transitions. However, since it
does not obey Curie’s law it is not a Curie paramagnet.
Two dimensional Ising model can be solved exactly
generalizing the transition matrix method (Onsager,
1944). It turns out that in this case there is a phase
transition at the temperature

T,=—2 <9909
In(1+v/2)

The specific heat diverges logarithmically at the critical
point 7' = T, and the phase transition is continuous.

Monte Carlo methods

Because, in general, interacting systems can not be solved
analytically numerical methods are of great value. An
important class of numerical methods, Monte Carlo
methods, handles interacting systems using stochastic
simulations. Suitable simulations for continuum systems,
like 3He- *He-liquids and electron gas, are mostly based
on Green’s function Monte Carlo.

In discretized systems one can often apply Metropolis’
Monte Carlo method:

e Let the possible configurations of the system be
jeJJ={12,...,K}
and E(j) the corresponding energies.
e Form a chain j1, j2,.. ., j, of configurations.

e Choose the next configuration, (n + 1)’th, in the
chain drawing randomly from the set J of the
possible configurations. The drawed configuration, j',
will be

— accepted if AE = E(j') — E(jn) < 0.

— accepted with the probability oc e #AF if
AFE > 0.

e When the length IV of the chain {j,} increases
(N — o00) the probability for each configuration j

approaches ‘
P(j) o e~ PEG),

e The chain is thus a canonical ensemble which can be
used to evaluate expectation values.

Note The method assumes that the energy eigenstates of
the system are known. So it can be applied for handling
of e.g. Isings models and all classical systems.

If the energy states are unknown the quantization must
be included in the simulation.



