Application of thermodynamics

Classical ideal gas
From the equation of state

pV = NkgT
we obtain the mechanical response functions
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Thermal response functions cannot be derived from the
equation of state. Empirically we have

1
CV = ikaN

Here % fkp is the specific heat capacity /molecule and f is
the number of degrees of freedom of the molecule.

Atoms/molecule f{ translations rotations
1 3 3 0
2 5 3 2
poly 6 3 3

For real gases f = f(T, p).

Entropy

0S oS
s = (%) e () w

1 dp
T CydT + (6_T> , dv,

since according to Maxwell relations
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Internal energy

We substitute into the firs law
dU=TdS —pdV

the differential
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According to a Maxwell relations and to the equation of
state we have
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and
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U == UO + CV(T — T()) = U() + ikaN(T — To)

If we choose Uy = CyTy, we get for the internal energy

1
U = 5fkuNT.
Now
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Cp =Nkg (§f+ 1>
or

Cp = IYCV;

where 7 is the adiabatic constant

= Cy/Cy = (f +2)/F.
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In the process V; — V5 and AQ = AW =0, so AU = 0.
Process is irreversible.

a) Ideal gas
Now

1
U= fksTN,

so T1 = T5, because U; = U,. The cange in the entropy is
thus
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b) Other material
The internal energy (and the number of particle) being
constant (dU = 0) we obtain from the expression
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Mixing entropy
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Suppose that initially pa = pp=pand Ta =T =T.
The process is adiabatic so AQ = 0.

In a mixture of ideal gases every component satisfies the
state equation

ij = NjkBT.

The concentration of the component j is
o= i _Pi
J N p )

where the total pressure p is
p=2_p;
J

Tapa 1

Each constituent gas expands in turn into the volume V.

Since pa = pp and TA =T, we have V; = Vz;. The
change in the entropy is (see the free expansion of a gas)
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or
ASg = —Nkp »_z;Inz;.
J
Now ASsek > 0, since 0 < z; < 1.
Way 2
For a process taking place in constant pressure and
temperature the Gibbs function is the suitable potential:

G = U-TS+pV
= %kaTN—TS+pV=---
—  NkgT[4(T) +Inp] = Nyu(p, T),
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Before mixing

Gy = > NiksT[¢;(T) + lnp]
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and after mixing

Gy = D NikgT[$;(T) +Inp)],
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so the change in the Gibbs function is
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we get for the mixing entropy

Because

ASmix = S(a) — S(b) = — ZNjkB ln:cj.

J

Gibbs’ paradoz: If A = B, i.e. the gases are identical no
changes take place in the process. However, according to
the former discussion, AS > 0. The contradiction can be
removed by employing quantum statitics of identical
particles.

Chemical reaction
Consider for example the chemical reaction

2H5S +30222H50 4+ 2S0s.

In generall the chemical reaction formula is written as
0= Z I/ij.
J

Here v; € T are the stochiometric coefficient and M;
stand for the molecular species.

Example
j | A B C D
Mj Hz S 02 H2 O SOZ
vi | =2 =3 2 2

We define the degree of reaction & so that
de = I/jdf.

When ¢ increments by one, one reaction of the reaction
formula from left to right takes place.
Convention: When & = 0 the reaction is as far left as it
can be. then

£>0.

We suppose that p and T are constant in the reaction.
Then a suitable potential is the Gibbs function

G= Zp,ij.
J



Its differential is
dG =" pidN; = d€ > vipy.
j j

We define
A,
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A, is thus the change in the Gibbs function per one
reaction.

Since (p,T') is constant G has a minimum at an
equilibrium. The equilibrium condition is thus

AG* = Z viust = 0.
J

In a nonequilibrium dG/dt < 0, so if A; > 0 we must have
d¢/dt < 0, i.e. the reaction proceeds to left and vice versa.
We assume that the components obey the state equation
of the ideal gas. Then

wj = kpT[¢;(T) +1np + Inz;],

where 0
Hj

¢;(T) = T

1
—n; =1+ 5f)InT.
So
AG = kT > v;65(T) + keTn (p2 [ o).
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The equilibrium condition can now be written as
[[= =p 2" K@),
J
where

K(T) —e Zj vi;(T)

is the equilibrium constant of the reaction. The
equilibrium condition is call the law of mass action.
The reaction heat is the change of heat A, Q) per one
reaction to right. A reaction is

e Endothermic, if A;Q > 0 i.e. the reaction takes heat.

e FExothermic, if A,Q < 0 i.e. the reaction releases
heat.

We write A,G as

AG=—-kgTInK(T)+ kBTZ v;Inpzx;.
J

Now
AQ = AU+ AW =AU +pAV = AU +pV)
= AH,
since Ap = 0.

When the total amount matter is constant

dG =-SdI'+Vdp

holds in a reversible process and
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because G = H — T'S. We see that
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This expression is known as the reaction heat.

Phase equilibrium
In a system consisting of several phases the equilibrium
conditions for each pair (A and B) of phases are

Ty = Tg=T
ba = pB=Pp
HiA = ,U/jB,j=1,...,H, (*)

where H is the number of particle species in the system.
Let us assume that the number of phases is F', so for each
species there are F' — 1 independent conditions (x). Now
Mia = Pia (P, T, {Nja}). Because the chemical potential is
an intensive quantity it depends only on relative
fractions, so

Hja = ,uja@7 T7 Tiay--- axH—l,Oé)7

and the conditions () take the form

,U'lA(p, Ta T1Ay--- ):L'H—I,A) =
ws(P, T, 218, .., CH_1,B)

IU’HA(pJ TJ T1A;--- ;'Z'H—l,A) =
/J’HB(pa Ta Z1Bs--- axH—l,B)-

There are
e M = (H — 1)F + 2 variables,
e Y = H(F — 1) equations.

The simultaneous equations can have a solution only if
M >Y or
F<H+2.

This condition is know as the Gibbs phase rule.
For pure matter the equilibrium condition

NA(pa T) = UB (pa T)



defines in the (p,T)-plane a coezistence curve. If the On the coexistence curve
phase B is in equilibrium with the phase C' we get

another curve Gi(p,T,N) = G2(p,T, N)
ps (P, T) = pc(p,T)-
and

The phases A, B can C can be simultaneously in dG =-SdT +Vdp
equilibrium in a crossing point, so called triple point, of

these curves when the number of particles N is constant. Along the

curve
Phase transitions _ _ Gi(p+dp,T +dT,N) = Ga(p + dp, T + dT,N),
In a phase transition the chemical potential
so that
= (g%) —8ydT + Vidp = —S»dT + Vadp
»T or on the curve

is continuous. Instead dp S-S AS T-IAH

S:_(%> dl ~ Va=Vi AV~ AV

or P and we end up with the Clausius-Clapeyron equation
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are not necessarily continuous. Here AH = Hy — Hy and AV =V, — V1.

A transition is of first order, if the first order derivatives

(S, V) of G are discontinuous and of second order, if the Examples
second order derivatives are discontinuous. Otherwise the
transition is continuous a) Vapor pressure curve
T p fusion curve

critical

NC
1 solid Slui
2 sublimation T vapor

curve —% Vapor pressure
Tiple point _curve

> D > T
In a first order transition from a phase 1 to a phase 2 We consider the transition
G (2) oG (1) liquid — vapor.
A% = - (8_T> (B_T)
p P Supposing that we are dealing with ideal gas we have
ac\®  rag\"
AV = (— - = . NkgT
<6p)T <8p>T AVZVVITB;
When we cross a coexistence curve p and T stay constant, since
o)
Vi(iquid) < Vv(apor)-
AQ = TAS=AU+pAV =AU +pV) Because the vaporization heat (the phase transition heat)
AH. AH, is roughly constant on the vapor pressure curve we
have
AQ is called the phase transition heat or thelatent heat. dp = AH1v1)2 .
Note First order transitions are associated with the heat dr  NkgT
of phase transitions but not the higher order transitions.  Integration gives us
Coexistence p = poe” AHv/NkeT,
T coexistence
curve b) Fusion curve
1 Now
2

AVis = Viiquid) — Vs(olia)

> p can be positive or negative (for example H20).



According to the Clausius-Clapeyron equation
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We see that when the pressure is increased in constant
temperature the system

1) drifts ”deeper” into the solid phase,

2) can go from the solid phase to the liquid phase.
¢) Sublimation curve
Now

dH =TdS+Vdp=CpdT + V(1 —Tay,)dp,

since S = S(p,T) and using Maxwell relations and
definitions of thermodynamic response functions
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The vapor pressure is small so dp = 0, and

T
H; H? + / CydT solid phase
0

T
H, = HY+ / C,dT vapor (gas).

0
Let us suppose that the vapor satisfies the ideal gas state
equation. Then
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where AH,s = Hy — H,.
For a mono atomic ideal gas C, = ngN , so that
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Here AHY, is the sublimation heat at 0 temperature and
pressure.

Coexistence range

dT +constant.

isotherms
v
undercooled
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Matter is mechanically stable only if % < 0. Thus the
range of stability lies outside of the points A and B.
Overheated liquid and undercooled vapor are metastable.
According to the Gibbs-Duhem relation
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we have on an isotherm
v
du = — dp.
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Thus, when the phases A and B are in equilibrium,
B
V
— = —dp=0.
HA — BB /A ~ 0

Pa
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Mazwell’s construction: The points A and B have to be
chosen so that the area I = area II.




