Application of thermodynamics

Classical ideal gas

From the equation of state

$$pV = Nk_BT$$

we obtain the mechanical response functions

$$\begin{array}{rcl} \alpha_p & = & \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p,N} = \frac{N k_B}{V p} = \frac{1}{T} \\ \\ \kappa_T & = & -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_{T,N} = \frac{N k_B T}{V p^2} = \frac{1}{p}. \end{array}$$

Thermal response functions cannot be derived from the equation of state. Empirically we have

$$C_V = \frac{1}{2} f k_B N.$$

Here $\frac{1}{2}fk_B$ is the specific heat capacity/molecule and f is the number of degrees of freedom of the molecule.

Atoms/molecule	\mathbf{f}	translations	rotations
1	3	3	0
2	5	3	2
poly	6	3	3

For real gases f = f(T, p).

Entropy

$$dS = \left(\frac{\partial S}{\partial T}\right)_{V} dT + \left(\frac{\partial S}{\partial V}\right)_{T} dV$$
$$= \frac{1}{T} C_{V} dT + \left(\frac{\partial p}{\partial T}\right)_{V} dV,$$

since according to Maxwell relations

$$\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial p}{\partial T}\right)_V.$$

Integrating we get

$$S = S_0 + \int_{T_0}^{T} dT \frac{C_V}{T} + \int_{V_0}^{V} dV \frac{Nk_B}{V}$$
$$= S_0 + C_V \ln \frac{T}{T_0} + Nk_B \ln \frac{V}{V_0}$$

or

$$S = S_0 + Nk_B \ln \left[\left(\frac{T}{T_0} \right)^{f/2} \frac{V}{V_0} \right].$$

Note A contradiction with the third law: $S \to -\infty$, when $T \to 0$.

Internal energy

We substitute into the firs law

$$dU = T dS - p dV$$

the differential

$$dS = \left(\frac{\partial S}{\partial T}\right)_{V} dT + \left(\frac{\partial S}{\partial V}\right)_{T} dV,$$

and get

$$dU = C_V dT + \left[T \left(\frac{\partial S}{\partial V} \right)_T - p \right] dV.$$

According to a Maxwell relations and to the equation of state we have

$$\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial p}{\partial T}\right)_V = \frac{Nk_B}{V} = \frac{p}{T},$$

so

$$dU = C_V dT$$

and

$$U = U_0 + C_V(T - T_0) = U_0 + \frac{1}{2}fk_BN(T - T_0).$$

If we choose $U_0 = C_V T_0$, we get for the internal energy

$$U = \frac{1}{2} f k_B N T.$$

Now

$$C_p = C_V + VT \frac{\alpha_p^2}{r_T}$$

or

$$C_p = Nk_B \left(\frac{1}{2}f + 1\right)$$

or

$$C_p = \gamma C_V$$

where γ is the adiabatic constant

$$\gamma = C_p/C_V = (f+2)/f.$$

Free expansion of gas

In the process $V_1 \to V_2$ and $\Delta Q = \Delta W = 0$, so $\Delta U = 0$. Process is irreversible.

a) Ideal gas

Now

$$U = \frac{1}{2} f k_B T N,$$

so $T_1 = T_2$, because $U_1 = U_2$. The cange in the entropy is thus

$$\Delta S = Nk_B \ln \frac{V_2}{V_1}.$$

b) Other material

The internal energy (and the number of particle) being constant (dU = 0) we obtain from the expression

$$dU = \left(\frac{\partial U}{\partial T}\right)_V dT + \left(\frac{\partial U}{\partial V}\right)_T dV$$

for the Joule coefficient $\left(\frac{\partial T}{\partial V}\right)_{U,N}$ the form

$$\left(\frac{\partial T}{\partial V}\right)_{U,N} = -\frac{\left(\frac{\partial U}{\partial V}\right)_T}{\left(\frac{\partial U}{\partial T}\right)_V} \\
= \frac{1}{C_V} \left(p - T\frac{\alpha_p}{\kappa_T}\right).$$

Mixing entropy

Suppose that initially $p_A = p_B = p$ and $T_A = T_B = T$. The process is adiabatic so $\Delta Q = 0$.

In a mixture of ideal gases every component satisfies the state equation

$$p_j V = N_j k_B T.$$

The concentration of the component i is

$$x_j = \frac{N_j}{N} = \frac{p_j}{p},$$

where the total pressure p is

$$p = \sum_{j} p_{j}.$$

Tapa 1

Each constituent gas expands in turn into the volume V. Since $p_A = p_B$ and $T_A = T_B$, we have $V_j = V x_j$. The change in the entropy is (see the free expansion of a gas)

$$\Delta S = \sum_{j} N_{j} k_{B} \ln \frac{V}{V_{j}}$$

or

$$\Delta S_{
m sek} = -Nk_B \sum_j x_j \ln x_j.$$

Now $\Delta S_{\text{sek}} \geq 0$, since $0 \leq x_j \leq 1$.

Way 2
For a process taking place in constant pressure and

temperature the Gibbs function is the suitable potential: G = U - TS + vV

$$G = U - TS + pV$$

$$= \frac{1}{2}fk_BTN - TS + pV = \cdots$$

$$= Nk_BT[\phi(T) + \ln p] = N\mu(p, T).$$

where

$$\phi(T) = \frac{\mu^0}{k_B T} - \xi - (\frac{f}{2} + 1) \ln T.$$

Before mixing

$$G_{(\mathrm{b})} = \sum_{j} N_{j} k_{B} T [\phi_{j}(T) + \ln p]$$

and after mixing

$$G_{(a)} = \sum_{j} N_j k_B T [\phi_j(T) + \ln p_j],$$

so the change in the Gibbs function is

$$\begin{array}{lcl} \Delta G_{(\mathrm{mix})} & = & G_{(\mathrm{a})} - G_{(\mathrm{b})} = \sum_{j} N_{j} k_{B} T \ln \frac{p_{j}}{p} \\ \\ & = & \sum_{j} N_{j} k_{B} T \ln x_{j}. \end{array}$$

Because

$$S = -\left(\frac{\partial G}{\partial T}\right)_{P,\{N_i\}},\,$$

we get for the mixing entropy

$$\Delta S_{
m mix} = S_{
m (a)} - S_{
m (b)} = -\sum_{j} N_{j} k_{B} \ln x_{j}.$$

Gibbs' paradox: If $A \equiv B$, i.e. the gases are identical no changes take place in the process. However, according to the former discussion, $\Delta S > 0$. The contradiction can be removed by employing quantum statitics of identical particles.

Chemical reaction

Consider for example the chemical reaction

$$2 H_2 S + 3 O_2 \stackrel{\rightarrow}{\leftarrow} 2 H_2 O + 2 SO_2$$
.

In generall the chemical reaction formula is written as

$$0 = \sum_{j} \nu_{j} M_{j}.$$

Here $\nu_j \in \mathcal{I}$ are the stochiometric coefficient and M_j stand for the molecular species.

Example

We define the degree of reaction ξ so that

$$dN_i = \nu_i d\xi$$
.

When ξ increments by one, one reaction of the reaction formula from left to right takes place.

Convention: When $\xi=0$ the reaction is as far left as it can be, then

$$\xi > 0$$
.

We suppose that p and T are constant in the reaction. Then a suitable potential is the Gibbs function

$$G = \sum_{j} \mu_{j} N_{j}.$$

Its differential is

$$dG = \sum_{j} \mu_{j} dN_{j} = d\xi \sum_{j} \nu_{j} \mu_{j}.$$

We define

$$\Delta_{
m r} \equiv \left(rac{\partial G}{\partial \xi}
ight)_{p,T} = \sum_{j}
u_{j} \mu_{j}.$$

 $\Delta_{\rm r}$ is thus the change in the Gibbs function per one reaction.

Since (p,T) is constant G has a minimum at an equilibrium. The equilibrium condition is thus

$$\Delta_{\mathbf{r}}G^{\mathrm{eq}} = \sum_{j} \nu_{j} \mu_{j}^{\mathrm{eq}} = 0.$$

In a nonequilibrium dG/dt < 0, so if $\Delta_{\rm r} > 0$ we must have $d\xi/dt < 0$, i.e. the reaction proceeds to left and vice versa. We assume that the components obey the state equation of the ideal gas. Then

$$\mu_j = k_B T [\phi_j(T) + \ln p + \ln x_j],$$

where

$$\phi_j(T) = \frac{\mu_j^0}{k_B T} - \eta_j - (1 + \frac{1}{2} f_j) \ln T.$$

So

$$\Delta_{\rm r} G = k_B T \sum_j \nu_j \phi_j(T) + k_B T \ln \left(p^{\sum \nu_j} \prod x_j^{\nu_j} \right).$$

The equilibrium condition can now be written as

$$\prod_j x_j^{\nu_j} = p^{-\sum_j \nu_j} K(T),$$

where

$$K(T) = e^{-\sum_{j} \nu_{j} \phi_{j}(T)}$$

is the equilibrium constant of the reaction. The equilibrium condition is call the law of mass action. The reaction heat is the change of heat $\Delta_r Q$ per one reaction to right. A reaction is

- Endothermic, if $\Delta_{\rm r}Q > 0$ i.e. the reaction takes heat.
- Exothermic, if $\Delta_{\rm r}Q < 0$ i.e. the reaction releases heat.

We write $\Delta_{\rm r}G$ as

$$\Delta_{\rm r} G = -k_B T \ln K(T) + k_B T \sum_j \nu_j \ln p x_j.$$

Now

$$\Delta Q = \Delta U + \Delta W = \Delta U + p \Delta V = \Delta (U + pV)$$

= ΔH ,

since $\Delta p = 0$.

When the total amount matter is constant

$$dG = -S dT + V dp$$

holds in a reversible process and

$$\begin{split} d\left(\frac{G}{T}\right) &= \frac{1}{T}dG - \frac{G}{T^2}dT = -\left(\frac{G}{T^2} + \frac{S}{T}\right)dT + \frac{V}{T}dp \\ &= -\frac{H}{T^2}dT + \frac{V}{T}dp, \end{split}$$

because G = H - TS. We see that

$$H = -T^2 \left[\frac{\partial}{\partial T} \left(\frac{G}{T} \right) \right]_{n,N}.$$

Now

$$\frac{\partial}{\partial T} \left(\frac{\Delta_{\rm r} G}{T} \right) = -k_B \frac{d}{dT} \ln K(T),$$

so that

$$\Delta_{\rm r} H = k_B T^2 \frac{d}{dT} \ln K(T).$$

This expression is known as the reaction heat.

Phase equilibrium

In a system consisting of several phases the equilibrium conditions for each pair (A and B) of phases are

$$T_A = T_B = T$$

 $p_A = p_B = p$
 $\mu_{jA} = \mu_{jB}, j = 1, ..., H, (*)$

where H is the number of particle species in the system. Let us assume that the number of phases is F, so for each species there are F-1 independent conditions (*). Now $\mu_{i\alpha} = \mu_{i\alpha}(p, T, \{N_{j\alpha}\})$. Because the chemical potential is an intensive quantity it depends only on relative fractions, so

$$\mu_{i\alpha} = \mu_{i\alpha}(p, T, x_{1\alpha}, \dots, x_{H-1,\alpha}),$$

and the conditions (*) take the form

$$\mu_{1A}(p, T, x_{1A}, \dots, x_{H-1,A}) = \mu_{1B}(p, T, x_{1B}, \dots, x_{H-1,B})$$

:

$$\mu_{HA}(p, T, x_{1A}, \dots, x_{H-1,A}) =$$

$$\mu_{HB}(p, T, x_{1B}, \dots, x_{H-1,B}).$$

There are

- M = (H-1)F + 2 variables,
- Y = H(F-1) equations.

The simultaneous equations can have a solution only if $M \ge Y$ or

$$F \leq H + 2$$
.

This condition is know as the *Gibbs phase rule*. For *pure matter* the equilibrium condition

$$\mu_A(p,T) = \mu_B(p,T)$$

defines in the (p, T)-plane a coexistence curve. If the phase B is in equilibrium with the phase C we get another curve

$$\mu_B(p,T) = \mu_C(p,T).$$

The phases A, B can C can be simultaneously in equilibrium in a crossing point, so called *triple point*, of these curves.

Phase transitions

In a phase transition the chemical potential

$$\mu = \left(\frac{\partial G}{\partial N}\right)_{p,T}$$

is continuous. Instead

$$S = -\left(\frac{\partial G}{\partial T}\right)_{p}$$

and

$$V = \left(\frac{\partial G}{\partial p}\right)_T$$

are not necessarily continuous.

A transition is of first order, if the first order derivatives (S, V) of G are discontinuous and of second order, if the second order derivatives are discontinuous. Otherwise the transition is continuous

In a first order transition from a phase 1 to a phase 2

$$\Delta S = -\left(\frac{\partial G}{\partial T}\right)_{p}^{(2)} + \left(\frac{\partial G}{\partial T}\right)_{p}^{(1)}$$

$$\Delta V = \left(\frac{\partial G}{\partial p}\right)_{T}^{(2)} - \left(\frac{\partial G}{\partial p}\right)_{T}^{(1)}.$$

When we cross a coexistence curve p and T stay constant, so

$$\begin{array}{rcl} \Delta Q & = & T \, \Delta S = \Delta U + p \, \Delta V = \Delta (U + p V) \\ & = & \Delta H. \end{array}$$

 ΔQ is called the *phase transition heat* or the *latent heat*. **Note** First order transitions are associated with the heat of phase transitions but not the higher order transitions.

Coexistence

On the coexistence curve

$$G_1(p, T, N) = G_2(p, T, N)$$

and

$$dG = -S dT + V dp$$

when the number of particles N is constant. Along the curve

$$G_1(p + dp, T + dT, N) = G_2(p + dp, T + dT, N),$$

so that

$$-S_1dT + V_1dp = -S_2dT + V_2dp$$

or on the curve

$$\frac{dp}{dT} = \frac{S_2 - S_1}{V_2 - V_1} = \frac{\Delta S}{\Delta V} = \frac{T^{-1} \Delta H}{\Delta V}$$

and we end up with the Clausius-Clapeyron equation

$$\left(\frac{dp}{dT}\right)_{\text{coex}} = \frac{1}{T} \frac{\Delta H}{\Delta V}.$$

Here $\Delta H = H_2 - H_1$ and $\Delta V = V_2 - V_1$.

Examples

a) Vapor pressure curve

We consider the transition

liquid
$$\rightarrow$$
 vapor.

Supposing that we are dealing with ideal gas we have

$$\Delta V = V_{\rm v} = \frac{Nk_BT}{p},$$

since

$$V_{\text{l(iquid)}} \ll V_{\text{v(apor)}}$$
.

Because the vaporization heat (the phase transition heat) ΔH_{lv} is roughly constant on the vapor pressure curve we have

$$\frac{dp}{dT} = \frac{\Delta H_{\rm lv} p}{N k_B T^2}$$

Integration gives us

$$p = p_0 e^{-\Delta H_{\rm lv}/Nk_B T}.$$

b) Fusion curve

Now

$$\Delta V_{\rm ls} = V_{\rm l(iquid)} - V_{\rm s(olid)}$$

can be positive or negative (for example H₂O).

According to the Clausius-Clapeyron equation

$$\frac{dp}{dT} = \frac{\Delta H_{\rm ls}}{T \ \Delta V_{\rm ls}}$$

we have

$$\frac{dp}{dT} > 0$$
, if $\Delta V_{\rm ls} > 0$

$$\frac{dp}{dT} < 0$$
, if $\Delta V_{\rm ls} < 0$

We see that when the pressure is increased in constant temperature the system

- 1) drifts "deeper" into the solid phase,
- 2) can go from the solid phase to the liquid phase.

c) Sublimation curve Now

 $dH = T dS + V dp = C_p dT + V(1 - T\alpha_p) dp,$

man C C(n T) and using Massell relations and

since S = S(p,T) and using Maxwell relations and definitions of thermodynamic response functions

$$dS = \left(\frac{\partial S}{\partial p}\right)_T dp + \left(\frac{\partial S}{\partial T}\right)_p dT = -\left(\frac{\partial V}{\partial T}\right)_p dp + \frac{C_p}{T} dT.$$

The vapor pressure is small so $dp \approx 0$, and

$$H_{\rm s} = H_{\rm s}^0 + \int_0^T C_p^{\rm s} dT$$
 solid phase
 $H_{\rm v} = H_{\rm v}^0 + \int_0^T C_p^{\rm v} dT$ vapor (gas).

Let us suppose that the vapor satisfies the ideal gas state equation. Then

$$\Delta V_{
m vs} = rac{N k_B T}{p} - V_{
m s} pprox rac{N k_B T}{p},$$

so

$$\frac{dp}{dT} = \frac{\Delta H_{\rm vs}}{T \, \Delta V_{\rm vs}} \approx \frac{p \, \Delta H_{\rm vs}}{N k_B T^2},$$

where $\Delta H_{\rm vs} = H_{\rm s} - H_{\rm v}$.

For a mono atomic ideal gas $C_p = \frac{5}{2}k_BN$, so that

$$\ln p = -\frac{\Delta H_{\rm vs}^0}{N k_B T} + \frac{5}{2} \ln T - \frac{1}{k_B N} \int \frac{\int_0^T C_p^{\rm s} dT'}{T^2} \, dT + {\rm constant}. \label{eq:polynomial}$$

Here $\Delta H_{\rm vs}^0$ is the sublimation heat at 0 temperature and pressure.

Coexistence range

Matter is mechanically stable only if $\frac{dV}{dp} < 0$. Thus the range of stability lies outside of the points A and B. Overheated liquid and undercooled vapor are metastable. According to the Gibbs-Duhem relation

$$d\mu = -\frac{S}{N} dT + \frac{V}{N} dp$$

we have on an isotherm

$$d\mu = \frac{V}{N} \, dp.$$

Thus, when the phases A and B are in equilibrium,

$$\mu_A - \mu_B = \int_A^B \frac{V}{N} dp = 0.$$

Maxwell's construction: The points A and B have to be chosen so that the area I = area II.