Foundations of thermodynamics
Fundamental thermodynamical concepts

System is the macrophysical entity under consideration.
Surrounding is the world outside of the system.

Open system can exchange matter and heat with the
surrounding.

Closed system can exchange heat with the surrounding
while keeping the number of particles constant.

Isolated system can exchange neither matter nor heat
with the surrounding.

Thermodynamical equilibrium

e No macroscopical changes.
e Uniquely described by external variables of state.
e System forgets its past; no hysteresis.

o In global equilibrium all parts of the system are in the
same state.

Nonequilibrium

e For example, isolated systems each in an equilibrium
state.

e In a local thermodynamical equilibrium
semimicroscopical regions are in an equilibrium,
neighbour regions in different equilibria = particles,
heat ... will flow.

e From stronger nonequilibria the system usually
relazes to a local equilibrium.

Degree of freedom is the number of quantities needed
for the exact description of the microscopic state (o
number of particles).

State variables are parameters characterizing the
macroscopic state.

Ezxtensive variable is proportional to the quantity
of the substance; e.g. volume V', particle
number N, internal energy U, entropy S, total
magnetic moment [ dr M.

Intensive variable is independent on the quantity
of the substance and can be determined for
every semimicroscopical volume element AV;
e.g. temperature 7', pressure p, chemical
potential u, magnetic field H, ratios of
extensive varialbles like p = N/V, s = S/N,....

Conjugated variables A and B appear in pairs in
expressions for the differential of the energy, i.e.
in forms £ A dB or +B dA; the one is always
extensive and the other intensive.

Process is a change in the state.

Reversibel process advances via states
infinitesimally close to equilibrium,
quasistatically. The direction of a reversible
process can be reversed by infinitesimal changes
of external variables.

Isothermic process : T constant.

Isobaric process : p constant.

Isochoric process : V constant.

Isentropic or adiabatic process: S constant.
Irreversibel process is a sudden or spontaneous

change during which the system is far from

equilibria. In the intermediate steps global state

variables (p, T, ...) are not usually defined.

Cyclic process consists of cycles which take the
system every time to its initial state.

State variables and exact differentials

Let us suppose that, for example, 7', V ja N tell uniquely
the state of the system. State variables are then their
unique functions:

p = p(T,V,N)
U = U(T,V,N)
S = S(T,V,N).

In an infinitesimal change state variables transform like
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The differentials of unique functions,
dp, dT',dV, ..., are exact differentials: their total change
evaluated over a closed path vanishes:
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dp = dU =--- =0.
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The total change of an exact differential is independent
on the path of integration.
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Let us denote by dF' a differential which is not necessarily
exact. The differential

dF = Fi(z,y) dzx + F>(z,y) dy
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is independent on the path. We say that dF' = dF’ is
integrable.

IfdF = Fidx + F»dy is not exact, there exists an
integrating factor M\(x,y) so that in the neighbourhood of
the point (x,y)

MF = AFydz + \Fydy = df

is an exact differential.

Legendre transformations can be used to make changes in
the set of the indepependent state variables. For example,
let us look at the function f(z,y) of two variables. We

denote 35 (z.)
_ _ z,Yy
2= fy = 781/
and define the function
g=f—-yfy=Ff-yz

Now
dg = df —ydz—2dy = fodx + fydy —ydz — 2dy
= fpdx —ydz.

Thus we can take x and z as independent variables of the
function g, i.e. g = g(z, z). Obviously
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Corresponding to the Legendre transformation f — g
there is the inverse transformation g — f

f=9g—29.=g+yz.

Often needed identities
Let F = F(z,y), z = 2(y,2), y
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=y(z,2) and z = z(z,y).
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Equations of state

State variables of an equilibrium system are related by a

state equation which, in most cases, is a relation between
thermal variables (T" or S) and mechanical variables.
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Examples:
Classical ideal gas

pV = NkgT
N = number of molecules
kg = 1.3807- 10_23J/K = Boltzmann constant.

Chemists use often the form

pV nRT
n = N/Ny = number of moles
R = kpNy=8.315J/K mol
= gas constant
No = 6.0221-10% = Avogadro’s number.

If the gas is composed of m different species of molecules
the equation of state is still

pV = Nk‘BT,
where now
m
N = 2 N;
=1
and
p= sz'-
i
Here

pi = Nik‘BT/V

is the partial pressure of the i:th gas.
Virial expansion of real gases

p=kgT [p+p2B2(T) +,03Bg(T) +] ,

where
p = N/V = particle density

and B, is the n:th virial coefficient.
Van der Waals equation
The molecules of real gases interact

e repulsively at short distances; every particle needs at
least the volume b = VX Nb.

e attractively at large distances due to the induced
dipole momenta. The pressure decreases when two
particles are separated by the attraction distance.
The probability of this is oc (N/V)2.

We improve the ideal gas state equation

p'V' = NkgT
so that
V' = V-Nb
p = p —ap? =true pressure.
then

(p+ ap®)(V — Nb) = NkgT.



Solid substances
The thermal expansion coefficient

a0 =L (9V
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and the isothermal compressibility
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of solid materials are very small, so the Taylor series
V=WA+a,T — k1p)

is a good approximation.
Typically

Q

107'%/Pa
1074/K.
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Stretched wire
Tension [N/m?]

o = E(t)(L — Lo)/ Lo,

where Lg is the length of the wire when ¢ = 0 and E(t) is
the temperature dependent elasticity coefficient.
Surface tension

t = temperature °C
t' and n experimental constants,
15n<2
oo = surface tension when ¢t = 0°C.

Electric polarization
When a piece of material is in an external electric field E,
we define

D=¢E+P,
where
P = electric polarization
= atomic total dipole momentum/volume
D = electric flux density
€0 = 8.8542-107'%As/Vm

= vacuum permeability.

In homogenous dielectric material one has

b
P= — | E
(a + T) >
where a and b are almost constant and a,b > 0.
Curie’s law

When a piece of paramagnetic material is in magnetic
field H we write

B = po(H + M),

where
M magnetic polarization
= atomic total magnetic moment/volume
B = magnetic flux density
po = 4m-107"Vs /Am = vacuum permeability.

Polarization obeys roughly Curie’s law

M=2H,

where p is the number density of paramagnetic atoms and
C an experimental constant related to the individual
atom.

Note Use as a thermometer: measure the quantity M/H.
Oth law

If each of two bodies is separately in thermal equilibrium
with a third body then they are also in thermal
equilibrium with each other = there exists a property
called temperature and thermometer which can be used to
measure it.

Work

Work is exchange of such "noble” energy that can be
completely transformed to some other noble form of
energy; e.g. mechanical and electromagnetic energy.

Sign convention: work AW is the work done by the
system to its surrounding.

Example pVT system

AW =pAV.
Note dW is not an exact differential. Instead

Yaw = av
p

is exact, i.e, 1/p is the integrating factor for work.
Example

dW =pdV — cAdL — E-dP— H-dM.

In general

dW =" fidX; = f-dX,

where f; is a component of a generalized force and X; a
component of a generalized displacement.

1st law

In addition to work a system can exchange chemical
energy, i.e. heat with its surroundings. Thermal energy is
related to the energy of the thermal stochastic motion of
microscopic particles.

The total energy of a body is called internal energy.



Sign conventions:

AQ

AW

uwAN
chemical energy

Due to the energy conservation law the change of the
internal energy satisfies

dU =dQ — f-dX + > _ pdN;.

k3

U is a state variable, i.e. dU is exact.
In a cyclic process ¢ dU = 0, so AW = AQ (no change in
chemical energy). In a pVT-system

p
AQT

AW = § pdV

AQ-

The total change of heat is
AQ =AQT+AQ,

where AQT is the heat taken by the system and AQ~ the
heat released by the system.
The efficiency n is
AW AQT +AQ™ _q
AQF AQT N

2nd law
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(a) Heat cannot be transferred from a cooler heat
reservoir to a warmer reservoir without any other
consequences.

(b) In a cyclic process it is not possible to convert all
heat taken from the hotter heat reservoir to work.

(c¢) It is not possible to reverse the evolution of a system
towards thermodynamical equilibrium without
converting work to heat.

(d) The change of the total entropy of the system and its
surroundings is positive and can be zero only in
reversible processes.

(e) Of all the engines working between the temperatures
T and T» the Carnot engine has the highest
efficiency.

We consider the infinitesimal process

by
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Now
dQ =dU +dW =dU + f-dX,

so there exists an integrating factor 1/T so that
= aQ =dS
740 =

is exact. The state variable S is entropy and T turns out
to be the so called absolute temperature.
The second law (d) can now be written as

dStot
> 0.
dt — 0

In an isolated system we have
ds > ! dqQ
- T )

where the equality holds only for reversible processes.
For reversible processes the first law can be rewritten as

dU =d@Q —dW + pdN =TdS — pdV + pdN.

Carnot’s cycle
The Carnot cycle C consists of reversible processes

a) isothermic T AQs >0
b) adiabatic To—T; AQ=0
c) isothermic Ty AQ1 >0
d) adiabatic Ty —->T» AQ=0

Now AU =0, so AW = AQ2 — AQ:-




We define the efficiency as

AW AQ
T=AQ, T T AQy

Because the processes are reversible the cycle C can be
reversed and C works as a heat pump.
Let us consider two Carnot cycles A and B, for which

AW 4 = AW = AW.

A is an enegine and B a heat pump. The efficiences are
correspondingly

AQ,-W

Let us suppose that

nA > N8>
so that AQg > AQ 4 or AQR — AQ 4 > 0. The heat

would transfer from the cooler reservoir to the warmer
one without any other changes, which is in contradiction
with the second law (form a). So we must have

nA <ng-

Similarly one can show that

g < NAs

so that n 4 = npg, i.e. all Carnot engines have the same
efficiency.

Note The efficiency does not depend on the realization of
the cycle (e.g. the working substance) = The efficiency
depends only on the temperatures of the heat reservoirs.
Similarly, one can show that the Carnot engine has the
highest efficiency among all engines (also irreversible)
working between given temperatures.

Let us consider Carnot’s cycle between temperatures T3
and T7. Now

n=1—f(Ts,T1),

where
A
f(T3;T1) = Ag; .

T3

Al
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Here

A
[(13,Tz) = Agz

A
[, Th) = Ag:
f(T37T1) = ﬁg;

S0
f(T3,Th) = f(T5,T>) f (T2, Th).
The simplest solution is
Ty
f(T2,Th) = T

We define the absolute temperature so that

The Carnot cycle satisfies

oo

since
/@ _AQ,
o T T
and
/d_Q _ AQ_ AQ,
A T T, -

This is valid also for an arbitrary reversible cycle

C

because 20 0
— = — =0.
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is exact and the entropy S is a state variable.
Because the Carnot cycle has the highest efficiency a
cycle containing irreversible processes satisfies

A T
or AQ AQ
T22 - Tll <0.
Thus for an arbitrary cycle we have
aq
T <0, (*)

where the equality holds only for reversible processes.
For an arbitrary process 1 — 2 the change of the entropy
can be obtained from the formula

dqQ
AS = / ds = / —.
rev rev T
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According to the formula (x) we have

daQ aQ
L?‘ WT <0

dQ
AS>/M?.

This is usually written as

or

aq
ds > —=
- T
and the equality is valid only for reversible processes.

In an isolated system we have

AS > 0.
3rd law
Nernst’s law:
lim S =0.
T—0

A less strong form can be stated as:

When the maximum heat occuring in the process from a
state a to a state b approaches zero the also the entropy
change AS, 5 — 0.

Note There are systems whose entropy at low
temperatures is larger than true equilibria would allow.



