Thermodynamic potentials

Fundamental equation
According to the first law

dU =T dS — pdV + pdN (+)

S,V and N are the natural variables of the internal
energy U, i.e.
U=U(S,V,N).

Furthermore, from the law (x) one can read the relations
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Now U, S, V and N are extensive so we have

()

U(AS, AV, AN) = AU(S, V, N) VA.

Let S5 S+eS, V>V +eVand N - N +eN, when €

is infinitesimal. Then
US+eS,V+eV,n+eN)=U(S,V,N)+
8—U eS + 6—U) eV + (6—U) eN.
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On the other hand, according to the equation (* * x) we
have

US +eS,V+eV,N+eN)=U(S,V,N)+eU(S,V,N).

We end up with the Fuler equation for homogenous
functions

v=s(%) +v(Z) 4N (6—’]) .
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Substituting the partial derivatives (s*) this takes the

form
U=TS—pV +uN

or 1
S = Z(U +pV = uN).

This is called the fundamental equation.

Internal energy and Maxwell relations

Because oU
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Similar relations can be derived also for other partial
derivatives of U and we get so called Mazwell’s relations
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In an irreversible process
TAS > AQ = AU + AW,

SO
AU < TAS —pAV + uAN.

If S, V and N stay constant in the process then the
internal energy decreases. Thus we can deduce that
In an equilibrium with given S, V and N the internal
energy is at the minimum.

We consider a reversible process in an isolated system

equilibrium position

We partition AW into the components

/pdV =

change of the

lwork due to the ]
volume

work done by the
AWiee = |gas against the
force F'
Now
AWrree AW + AW = p1AVI + p2 AV,

= (p1 —p2)AVL = (p1 —p2)AAL
= —FAL.

According to the first law we have

AU = AQ—AWzAQ—/pdV—AWfree

= AQ - AI/Vfree-
Because now AQ = 0, we have
AU = _AWfree = FAL)

i.e. when the variables S, V and N are kept constant the
change of the internal energy is completely exhangeable
with the work. AU is then called free energy and U
thermodynamic potential.



Note If there are irreversible processes in an isolated
system (V and N constants) then

AI/Vfree S —AU.

Enthalpy

Using the Legendre transform

Uvor=U-v(Z) —vipw
V) sy

We move from the variables (S,V, N) to the varaiables
(S,p; N). The quantity

H=U+pV
is called enthalpy.
Now
dH = dU +pdV +Vdp
= TdS —pdV +pudN +pdV +Vdp
or

dH =TdS + Vdp+ pdN.

From this we can read the partial derivatives
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Corresponding Maxwell relations are
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In an irreversible process one has
AQ =AU + AW — u AN < TAS.

Now AU = A(H — pV), so that

AH <TAS+V Ap+ pAN.

We see that

In a process where S, p and N are constant spontaneous
changes lead to the minimum of H, i.e. in an equilibrium
of a (S,p, N)-system the enthalpy is at the minimum.
The enthalpy is a suitable potential for an isolated system
in a pressure bath (p is constant).

Let us look at an isolated system in a pressure bath. Now

dH = dU + d(pV')

and
dU =d@Q —dW + pdN.

Again we partition the work into two components:

AW =pdV +dWiree-

Now
dH =dQ + V dp —dAWiree + pdN

and for a finete process
AH < /TdS+/Vdp—AWfree+/udN.
When (S, p, N) is constant one has
AH < —AWrree
i.e. AWiee is the minimum work required for the change
AH.

Note An other name of enthalpy is heat function (in
constant pressure).

Joule-Thomson phenomenon
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p1 and po are temporal constants, p; > p» and the process
irreversible. When a differential amount of matter passes
through the choke the work done by the system is

AW = padVa + p1dVi.

| Vi Va
Initial state | Vinit 0
Final state 0 Vénal

The work done by the system is
AW = /dW = p2Vanal — P1Vinit-

According to the first law we have
AU = Utinal — Uinit = AQ — AW = _AW,

so that

Uinit + P1Vinit = Utinal + P2Venal-
Thus in this process the enthalpy H = U + pV is
constant, i.e. the process is isenthalpic,

AH = Hloppu — Haw = 0.

We consider now a reversibel isenthalpic (and dN = 0)
process init—final. Here

dH =TdS+Vdp=0,
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Now T = T(S,p), so that
oT oT
dTl = (—) ds + (—) dp.
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where C), is the isobaric heat capacity (see
thermodynamical responses).
Using the Maxwell relation
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and the partial derivative relation
(%),
oS »

(
T T [0V
7=~ = (Z2) ap.
d c dS+Cp (6T)pdp

i)
~

)y
)y

Q| ®
S| »

)
<

we can write

Substituting into this the differential d.S in constant
enthalpy () we get so called Joule-Thomson coefficients
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Defining the heat expansion coefficient o, so that
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we can rewrite the Joule-Thomson coefficient as
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We see that when the pressure decreases the gas

e cools down, if T'ay, > 1.

e warms up, if Tayp, < 1.

For ideal gases (%—g)H = 0 holds. For real gases <%)H

is below the inversion temperature positive, so the gas
cools down.

Free energy
The Legendre transform
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defines the (Helmholtz) free energy.

Now
dF = —-SdT — pdV + pdN,

so the natural variables of F' are T, V and N. We can
read the partial derivateves

OF
S = -+
(57)..,
_ _(oF
A T e
_ (9F
o ONJrpy -
From these we obtain the Maxwell relations
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In an irreversible change we have
AF < —=SAT —pAV + u AN,
i.e. when the variables T, V and N are constant the
system drifts to the minimum of the free energy.

Correspondingly
AVVfree S _AFa

when (T,V, N) is constant.
Free energy is suitable for systems where the exchange of
heat is allowed.

Gibbs’ function

The Legendre transformation
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defines the Gibbs function or the Gibbs free energy
G=U-TS+pV.
Its differential is
dG =-S5dI'+Vdp+ pdN,

so the natural variables are T', p and N. For the partial
derivatives we can read the expressions
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From these we obtain the Maxwell relations
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In an irreversible process

AG < —SAT +V Ap+ AN,

holds, i.e. when the variables T, p and N stay constant
the system drifts to the minimum of G.
Correspondingly

AI/Vfree S _AG7

when (T, p, N) is constant.
The Gibbs function is suitable for systems which are
allowed to exchange mechanical energy and heat.

Grand potential

The Legendre transform
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defines the grand potential
Q=U-TS —uN.
Its differential is
dQ) = —-SdT — pdV — Ndpu,

so the natural variables are 7', p andpu.
The partial derivatives are now
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We get the Maxwell relations
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In an irreversible process

AQ < —SAT —pAV — N Ay,

holds, i.e. when the variables T', V andu are kept
constant the system moves to the minimum of Q.
Correspondingly

AI/Vfree S —AQ,

when (T,V, u) is constant.
The grand potential is suitable for systems that are
allowed to exchange heat and particles.

Bath

A bath is an equilibrium system, much larger than the
system under consideration, which can exchange given
extensive property with our system.

Pressure heat

The exchanged property is the volume or a corresponding
generalized displacement; for example magnetization in a
magnetic field.

Heat bath

Particle path

Baths can also be combined; for example a suitable
potential for a pressure and heat bath is the Gibbs
function G.

Thermodynamic responses

1) Volume heat expansion coefficient
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2) Isothermic compressibility
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3) Adiabatic compressibility
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The velocity of sound depends on the adiabatic

compressibility like
\/ 1
CS = 5
mpKs
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where p = N/V.




where m the particle mass.
One can show that
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4) Isochoric heat capacity
In a reversible process we have

AQ =TAS.
The heat capacity C is defined so that

AQ AS
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In constant pressure we define

oS
Cv=T (a—T)V,N

In constant volume and the number particles being fixed,

according to the first law

dU =TdS —pdV + pdN =TdS,
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5) Isobaric heat capacity
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dH =T dS +V dp + pdN,

we can write
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one can write

Now

(@) _ (35(V(p,T),T)>

ar/, oT »

) (), (2
aT ), ov)p\oT/,
and (a Maxwell relation)

(). (%)V

SO (
Since >

or

SO
2

(8%
Cp =Cy + VT2,
KT

Thermodynamic equilibrium conditions
We divide the system into fictive semimicroscopic parts:

A

s AU=AV=AN=0

Extensive variables satisfy
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Since each element is in equlibrium the state variables are
defined in each element, e.g.

Sa = Sa(Uaavaa {Nja})

and

AS. = 2 AU+ P2 AV, - "J“  ANja.

To ° Ta
We suppose that the system is composed of two parts:
a € {A,B}. Then

AUB = —AUA, AVB = —AVA and ANJ’B = —ANJ'A
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In an equilibrium S is at its maximum, so AS = 0 and

Ty = Tg
bAa = PB
Kja = H;iB-

This is valid also when the system consists of several
phases.

Stability conditions of matter

In a steady equilibrium the entropy has the true
maximum so that small variations can only reduce the
entropy.



We denote the equilibrium values common for all fictive
parts by the symbols 7', p and {y;} and the equilibrium
values of other variables by the superscript °.

We write the entropy S, of the fictive partial system «
close to an equilibrium as the Tatlor series

Sa(UmVa:{ a})z
Se(Ua, Vo, {N7, 1)

( ) (ﬁé)lﬁ%
)

Here AU, = U, — U9 and correspondingly for other
quantities. The variations of partial derivatives stand for
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and similarly for other partial derivatives.
In an equilibrium
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This can be rewritten as

AS, =
1 1 Pa
i{A (T_) AU, + A (T_) AV,
-3 a (‘;1_“) ANja}.
j [e%

Using the first law we get
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This can be further written as
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Since AS < 0, we must have

Cv >0, k7 >0
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