763695S GENERAL RELATIVITY Exercise 1 Autumn 2016

1. Newton’s law of gravity as a field equation
According to Newton’s law of gravity, the force on a body 1 (mass m;) at r; caused
by a second body (mass my) at 75 is

mimsg

7, (1)

where » = r1 — r9 and G is the constant of gravity. In this exercise we try to show
that this implies that the acceleration a of a test particle at r in the presence of an
arbitrary mass distribution with density p(r) is given by

a(r) = -=VV(r), (2)

F=-G

72

where the potential V' satisfies the Poisson equation
V2V (r) = 47Gp(r). (3)

a) Based on (1) and (2) show that the potential caused by one point particle of
mass M at the origin corresponds to the potential

Vir) = —G]‘f. (4)

b) Show that the potential (4) satisfies the Poisson equation for = # 0.

c¢) By integrating the Poisson equation over a small sphere of radius € around the
origin, and transforming the left hand side to a surface integral, show that the
potential (4) satisfies the Poisson equation also at r = 0.

d) Based on the above, try to justify the claim in the introduction for an arbitrary
mass distribution (not just one point mass).

You can use the following formulas appropriate for spherical coordinates (r, 0, ¢):

0P 100 . 1 00

d—pls Lo" o®

Ve = 05 TP rsnd 0o (5)
L0 (00) 10 (L o0y 1 g
vcp_r?@r " or +7’zsin989 Sme@@ +r2sin268¢2' (6)

The motivation for this exercise is that equation (3) has some similarity with the
corresponding equation in general relativity, that will be discussed later in this
course.

2. Four vector manipulation in special relativity
Consider the four-vectors

M =(2,1,1,0) and 0 = (1, 3,0,0). (7)



a) Calculate A\, 0,, A\, 0%, 0¥\,

b) Draw a sketch of the four vector M (7) in coordinate axes (A!, A2, \), where
the \° axis is drawn vertical. Can M\ represent a difference of events for the same
particle? Do the same for o#. Sketch also the surface A\, A\* = 0 (known as the light
cone).

¢) Consider the Lorentz-transformation A = A\, where

¥y -y 00
W —E’y Y O O
0 0 01

and v = 1/4/1 —v%/c2. Show that when this is applied to event four vector z# =
(ct,z,y,2), it is equivalent to the familiar form of the Lorentz transformation

S z— vt
V1 —v2/c?
/ — y
2 = z
t— 2
f— t—(/c)z 9)

,/1—212/02'

d) Using (7) and Lorentz transformation with v = ¢/2, calculate \*, o and M .
Compare the last one with o”\,.
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. The coefficients of Lorentz transformation

Based on invariance of s? = ¢?t? — 2% — y? — 22, show that in the transformation

t'=Bt+Cx

' = A(x — vt)
Y=y ’
Z =z

the constants are A = B = (1 —v?/c?)7Y2, C = —(v/c?)(1 — v?/c?)~1/2

. Inverse Lorentz transformation

Equation
ct’ y —vy/e 0 0 ct
| | —uy/e y 0 0 x
y | 0 0 10 Y
2 0 0 0 1 z

gives the matrix [A#] for the boost in the x direction. What form does the inverse
matrix [A},] take? What is the velocity of K relative to K'?

. Newtonian limit of the Lorentz transformation
Show that when v/c is negligible, the equations of Lorentz boost:

!/

t'=~t—av/?), 2 =qy(x—vt),y =y, ' ==
reduce to those of a Galilean boost:

V=t a=x—vt,y =y, 2 = 2.

. 4-velocity
In a laboratory frame, write the 4-velocity u* for (a) a stationary chair, (b) a
speeding bullet. Is it possible to write u* for a photon?

. Wave 4-vector
Consider an electromagnetic plane wave whose electric field is of the form

E = Eycos(wt — k7). (10)

a) What is the frequency v of the wave? How is k related to the propagation direction
vector n and the wave length A of the wave? How should w and k be related in
order that the velocity of the wave be ¢?



b) We write the electric field of the wave in the form
E = Ejcos(kt'x,). (11)

Write k*z, in terms of components and comparing with (10) identify the compo-
nents of wave 4-vector k*. Express k* using \ and n.

. Electromagnetic field tensor
Show that the definitions

0A
E = — - — 12
Vo -~ (12)
B = VxA, (13)
A= (2 A), A.=(2,-A) (14)
c c
and DA, 0A
F p_ = 1
e av oxH (15)
lead to
0 —E./c —E,/Jc —E,/c
E,/c 0 B, —-B,
[Flu] EJc -B. 0 B, | (16)

E.)e B, -B, 0
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1. Basis vectors of cylindrical coordinates
Cylindrical coordinates (p, ¢, z) are defined by

T = pcos ¢t + psin¢j + zk,

where 0 < p < 00, 0 < ¢ < 271 and —oo < 2z < oo. Obtain expressions for the
natural basis vectors e,, e4, e, and the dual basis vectors e”, e, e* in terms of 2,
7, k.

2. Constant vector field in different coordinates
Show that, when referred to
(a) the natural basis {e,, ey, e, } of spherical coordinates,
(b) the natural basis {e,, e,, e, } of cylindrical coordinates,
(c) the natural basis {e,, e,, e, } of the paraboloidal coordinates (u, v, w)

r=u4+v, y=u—v, 2z=2uv+w,

the constant vector field 4 is given by (cosecf = 1/sin6)
(a) ¢ = sin 6 cos pe, + r~* cosd cos pey — ! cosec  sin e,
(b) ¢ = cos e, — p~ ' sin pey,

(c)i=3e,+ie,— (u+v)e,.

3. Covariant componenets
Verify equation
>\j =\ e]',

which shows that the covariant components A; of a vector A are given by taking dot
products of A with the natural basis vectors e;.

4. Transformation between basis vectors
Show that e; = g;;e’ and €' = g"e;.

5. Simplifications
Simplify the following expressions:

(a) A67 Xz, (b) 1igguA*, () gyAip? — Ny

6. G and G in orthogonal coordinates
If the coordinate system is orthogonal, what can you say about the matrices G = [g;]
and G = [gV]?



7. G and G in paraboloidal coordinates
Inverting the paraboloidal coordinates of Problem 2c¢ gives

1 1 1
uzi(x%—y), v:§(x—y), w:z—i(x2—y2).

Form the natural and dual basis vectors and show that they lead to

2(1 + 2v?) duw 20

G = [gij] = 4uv 2(1+2u?) 2u |,
2v 2u 1
R 1/2 0 —v
G=[¢g"]=| 0 1/2 —u

v —u 2u?+ 202 +1
Show that these satisfy GG=GG=1.

8. Contravariant components in paraboloidal coordinates
In paraboloidal coordinates (Problems 2c and 7) a vector field g has covariant
components given by
i = vy — ud; + 0.

What are its contravariant components p°?

9. Kronecker delta
A repeated suffix implies summation. What, then are the values of
(a) &, (b) 04, (c) o3, (d) a7

Remember that uppercase literal suffixes A, B, ... are used when referring to a two
dimensional space, and take values 1 and 2; suffixes i, j, k, ... take values 1, 2, 3;
Greek suffixes take values 0, 1, 2, 3; lower case letters from the beginning of the
alphabet refer to an N-dimensional space, and have the range 1, 2, 3, ..., N.
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. Line element
For the paraboloidal coordinates (Example 1.2.1 in FN)

2(1 + 20?) duw 20
G = [gij] = 4uv 2(1+2u?) 2u
2v 2u 1

What form does the line element ds* = g;;du’du’ take in these coordinates?

. Curve length
Describe the curve given in cylindrical coordinates by

p=a, o=t z=t, —1<t<7
(where a is a positive constant) and find its length.

. Arc length as parameter

Suppose that in the curve r(s), the arc length s (measured along a curve from some
base point) is used as a parameter. Calculate the length of the tangent vector 7(s)
and argue that it is equal to 1.

. Relationship of U} and o

Use the chain rule to show that USU! = 6% and U}'U}, = 6. Obtain the same

results by using the fact that 0¥ = e - e; = ¥ - ;.

. Transformation of covariant components .

Obtain the equation y; = U] p1; using equation p; = U} pu; and the result of exercise
4.

. Transformation of g;; in matrix form
Translate equation
Gijr = UilfU;/gkz

into a matrix equation involving

U=[Ui, G= [9:], G' = [g90j].

J

Hence, use G in spherical coordinates (Example 1.3.1 in FN)

1 0 0
G=1|0 r? 0
0 0 r2sin’6



and the transformation matrix between cylindrical and spherical coordinates (Example
1.4.1 in FN)

) singd 0 cos 6
U= (cosf)/r 0 —(sinf)/r |,
0 1 0

to obtain the line element for Euclidean space in cylindrical coordinates.

. Transformation of the stress tensor
Show that the components T;f of the stress tensor T are given by

7'; =e' 7(ej)

and use this result to re-establish the transformation formula

/ -
TTZn/ = U]z Ufn/TIk.



763695S GENERAL RELATIVITY Exercise 5 Autumn 2016

1. Basis vectors of the tangent plane
Starting from r = (u +v)2 + (u — v)j + 2uvk, calculate the natural basis {es} =
{e,,e,}, and the quantities g4p and g*Z. (Hint: you can use the identity GG = I.)

2. Line element of a surface
Write down the line element for
(a) a sphere of radius a, using angles (0, ¢) borrowed from spherical coordinates as
parameters;
(b) a cylinder whose cross section is a circle of radius a, using (6, z) borrowed from
cylindrical coordinates as parameters;
(c) the hyperbolic paraboloid of exercise 1, using the parameters (u,v) of that
exercise.

3. Flatness of a surface
Is the cylinder of exercise 2(b) curved or flat? By flat, one means that the line
element can be written as ds* = du® + dv? in some coordinates (u,v).

4. Coordinate dependence of 7,;, = 0,
Suppose that in some coordinate system the components 7, of a type (0, 2) tensor
satisfy 7., = 04. Show that this property is not coordinate-independent.
(Use the transformations between spherical and cylindrical coordinates developed
in exercise 4.6 as the basis for a counter example.)

5. Symmetric tensor
Verify that the relationship 7%° = 7%, defining a symmetric tensor, is coordinate-
independent.

6. A tensor identity
Show that if o4 = 04, and 7% = —7% for all a, b, then 0,7 = 0.

7. Decomposition of a tensor into symmetric and antisymmetric parts
Show that any type (2, 0) or type (0, 2) tensor can be expressed as the sum of a
symmetric and an antisymmetric (79° = —7°) tensor.

Continues...



8. Coordinate transformation
Show that if at a point P of a manifold the contravariant vector A® is nonzero, then
it is possible to change to a new (primed) coordinate system in which A% = §¢ at
the P.
(A simple transformation between coordinates z* and z° could be 2% = A 2° with
a constant matrix A = [A¢']. Assuming this form write the conditions that A should
satisfy, and argue that they all can be satisfied.)

9. Another tensor identity
If 7% is a symmetric tensor and A% a contravariant vector with the property that

7_bc/\(z + 7_czz>\b + Tab)\c =0

for all a, b, ¢, deduce that either 7% = 0 or \* = 0.
(Hint: If at the point in question \* # 0, then we can introduce the special coordinate
system of previous exercise.)
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1. Parameter independence of arc length
Show that the definition of the length of a curve given by equation

tp
L= /t |gap a0V 2dt

is independent of the parameter used.

2. Vectors in Schwarzschild metric
For r > 2m, the Schwarzschild solution has a metric tensor field given by

lgw] = diag(02(1 —2m/r),—(1 — 2m/?")_1, —r2, —r? sin? 9),

where the coordinates are labeled according to t = 2°, r = 2!, 0 = 22, ¢ = 23. Find
the lengths of the following vectors and the angles between them:

(a) N =46f; (b) put =65 (¢c) v =05 + c(1 — 2m/r)oy.
Are any of these vectors null? Are any pairs orthogonal?

3. Coordinate transformation
Let 2 be a system of Cartesian coordinates in Euclidean space, and let 2 be a new
system whose axes are obtained by rotating those of the unprimed system about its

2 axis through an angle # in the positive sense.

a) Show that at each point of space the new basis vectors are given in terms of the old
basis vectors by

ey =cosfe; +sinfle,, ey =—sinfe; +coshe,, ey =es.
What are the transformation matrices [X!] and [X]?

b) Recall that, for a rigid body having one of its points fixed at the origin O, its angular
momentum L* about O can be expressed as L' = I'w’, where I} is the inertia tensor
of the body about O and w is its angular momentum (all regarded as tensors at
O). Find [L] when

[0 0 0 T
[]=10 m 0 | and [w] =] 15
0 0 m 0

¢) Transform the components to find I’;, w”, and L” relative to the new coordinate
system, and check that L = T ;iwj/.



4. General parameter in geodesic equation
Show that if a general parameter ¢ = t(s) (where dt/ds # 0) is used to parameterize
a straight line in Euclidean space, then the geodesic equation takes the form

Pyt dud dut du’ d*t (dt\ "’
eu o Sy, here h(s) = — o (&)
aiz Pl g = o) where h(s) = =75 <ds>

Deduce that this reduces to the simple form

Put o dit
dt2 kot dt

if, and only if, ¢ = As + B, where A, B are constants (A # 0).

5. Lenght of tangent vector
The aim of this exercise is to show that the length L of the tangent vector ¢ to
an affinely parameterized (i.e. the parameter is of the form ¢t = As + B) geodesic is
constant.

a) Start by arguing that £L% = g,a%4°.

b) Differentiate this equation to obtain an expression for +2LL in terms of quantities
Jab, Jab, T, and .

d2z a dxb dz¢

¢) Put gap = 0.9ap2° and use the geodesic equation T2 be gr g = 0 to express the

second derivates 2 in term of the connection coefficients I'f. and the first derivates

v

d) Then use equation I'f, = %g“d(abgdc + 0cgba — Oagne) to express the I'Y, in terms of the
metric tensor components and their derivates.

e) Simplify to obtain OLL = 0, from which it follows that L =0 and L is constant.
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1. Connection coefficients for a spherical surface
In exercise 5.2(a) it was shown that the line element on a sphere of radius a using
spherical coordinates is ds?> = a%df? + a® sin? @ d¢?. Defining the coordinates u' = 0,
u? = ¢, show that the metric tensor components are given by

(] = a? 0
IABI= 1 0 a2sin20 |

Deduce using the Lagrangian method that the only nonzero connection coefficients
are
IY, = —sinfcosf, T2, =T3 =coth.

2. Geodesics for a spherical surface
Show that all lines of longitude on a sphere (curves given by ¢ = constant) are
geodesics.

3. Time-like geodesics in Robertson-Walker spacetime
Robertson-Walker spacetime is defined by the line element g, dz*dz” = dt* —
[RO12[(1 — kr?)~tdr? + r2d0* + r?sin? 0d¢?], where u,v = 0,1,2,3 and 2° = t,
2l =71, 22 =0, 23 = ¢. A coordinate curve for which 7, , ¢ are constant and ¢
varies is given by

zH(u) = udfy + rody + 005 + ook,

where rq, 0y, ¢g are constants and wu is a parameter. Verify that all such coordinate
curves are geodesics affinely parameterized by w.

4. Parallel transport on a spherical surface
Consider a sphere of radius a, with coordinates u! = 0, u?> = ¢ borrowed from
spherical coordinates, where 0 < § < 7 and 0 < ¢ < 27. Let us transport a vector
A parallelly around the circle of latitude v given by 6 = 6, (6, = constant), starting
and ending at the point Fy where ¢ = 0 or 27. The circle is given parametrically by

ut = 058 65, 0 < t < 2,

so @ = 04 and the equation for parallel transport becomes A + T'A,\B = 0. Verify
that the initial-value problem comprising the pair of equations

A — sin 6y cos HoA2 =0
A2 + cot OpAt =0



with initial conditions

M(0) =a'cosa
A2(0) = (asinfy) ' sina

has a solution given by equations

M = a7t cos(a — wt)
A2 = (asinfy) ' sin(a — wt),

where w = cos 8.

. Reversal in transport on a closed path
For what circle(s) of latitude is the final direction of the transported vector in
Exercise 7.4 exactly opposite to that of the initial direction?

. Angle between vectors in parallel transport

Noting that the equator (fy = 7/2) is a geodesic and has tangent vector u* = a=152,
verify that for parallel transport along a geodesic the angle between the transported
vector of Exercise 7.4 and the tangent to the geodesic is constant.
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. Transformation of I'}.
Show that an alternative form for the transformation formula

e =T XY X0 X, + X8, X5

18
d f fyrd
b, , =T fXd Xy Xy X,f,Xc,ng

. Transformation of absolute derivative
By using the transformation rules to the quantities on the left hand side, verify the
formula

A Ty i = X5 (A 4+ Tdaal)
Based on this, deduce that the defining equation for parallel transport of a contra-
variant vector along a curve

A"+ TN =0
is coordinate-independent.

. Absolute derivative of (0,2) and (1,1) tensors
Obtain formulae

Dty . . . Dr#
L= — Ffwﬂ'cwd — ngTacxd and b

= ¢ + I'Yreat — Tgroqd

du
using similar method as writing 7% = A%’ in deriving the result
Drab
o = 7_ab 4 chTCb d 4 deT .led

. Geodesic equation using absolute derivative
Show that equation
d*z® , dxb dx®
- _|_ be T
du? du du
for an affinely parameterized geodesic can be written as
Dz
du

=0.

. Length of tangent vector using absolute derivative
Prove that the length of the tangent vector £ to an affinely parameterized geodesic
is constant.
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1. Geodesic coordinates
Show that, as a result of the coordinate transformation leading to geodesic coordi-
nates [equation 29 = 2% — 2§, + J(T'.)o (2" — 2%)(2° — 23)], we can write

(ga’b’)O = (gab>0~

2. Equation of motion for a free particle
Deduce the geodesic equation
d?xH dx” dx®

I =
dr? t e dr dr 0

from the equations
Dp/dr = f*,  p'=mu",

in the case of a free particle, for which f* = 0.

3. Derivatives of inverse functions
Given the function 7(t), the derivative of the inverse function #(7) is

at_ (dr\”
dr  \ dt '
Show that the second derivative is
&t (dr)
dr?2 de2 \ dt '

Use this result to show that
a2t (dt\ " & (dr\
h(t) = ——— | — = — [ — . 17
(*) dr? (dT) dt? <dt> (17)

4. Newtonian limit
(a) Assume that g, = 7., + hy,, where h,, are small.
By writing g"” = n* + ", where h*” are small, show that

9" =" = 0" hey. (18)



(b) Show that for nonrelativistic velocities,

dr\?
(dt) — ]. + hoo.

Hence deduce that the term on the right hand side in the geodesic equation (Exercise
6.4)

d*z’ LT da” dx” _ (t)%

dt? Ydt dt dt’
where h(t) is given in Eq. (17), is unimportant in the Newtonian limit, where hgy =

2V/ 2.

. Rotating coordinates
Starting from the line element

Adr? = AdT? —dX? —dY? — dZ?
and the transformation

T=t
X = zcoswt — ysinwt
Y = xsinwt + y cos wt
Z =z

check that the line element in coordinates (¢, x,y, z) is given by

Adr? = {02 —w? <x2 + y2)} dt* + 2wy dx dt — 2wz dy dt — da® — dy* — d2>.

. Constant gravitational field
The potential V' = gz of constant gravitational field correspons to the line element
2
Adr? = ¢ (1 + gz) A2 — da? — dy? — d=2,

c2

Use the Lagrange method to calculate the connection coefficients I'# , using the

variables 2° = ¢, 2! = x, 2?2 = y, and 2® = 2. Show that in the limit ¢ — oo, the
geodesics satisfy the Newtonian equations of motion

d?r

m——- = —mges.
dt2 ges
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. Static spherically symmetric spacetime
The line element of a static spherically symmetric spacetime is

c*dr® = A(r) dt* — B(r) dr® — r’df” — v sin® 0 d¢”.

Use the Euler-Lagrange equations to obtain the geodesic equations, and hence show
that the only nonvanishing connection coefficients are:

F81 = F?O — A’/QA’ 1’%0 — A,/QB, F}l _ B,/QB,
I3 = —r/B, I, = —(rsin?0)/B, T2, =12 =1/r,
I3 = —sinfcosf, IF,=T% =1/r, I3, =13, = cotd,

where primes denote derivatives with respect to r, and

=t at=r22=0,2° = 6.

. Energy-momentum-stress tensor for fluid at rest

Show that in Cartesian coordinate system, which brings the velocity of the fluid
at a point P to rest (i.e., in an instantaneous rest system for the fluid at P), the
components of the stress tensor (as defined by T* = (p + p/c)utu” — pn*) are
given by

pc2 0 0 0
0O p 0O

pr)
) = 0 0 p O
0 00 p

. Dimensional consistency of the energy-momentum-stress tensor
What is the unit of T#”? Check that all the terms on the right-hand side of equation
T = (p + p/c*)uru” — pn*” have the same units.

. A simple indentity
Verify that u#u, = ¢* implies that u”,u, = 0.

. Curvature tensor
(a) Show that for a contravariant vector field A%,

a a a d
A ;bc_)\ ich = —R dbc)\ .



(b) Show that for a type (2, 0) tensor field 7,

7_ab;cd - 7_ab;dc = _RaechEb - Rbechae-
(Without loss of generality take 79 = \ub.)
(c) Guess the corresponding expression for a type (2, 1) tensor field 7°.

6. Cyclic identity
Prove the cyclic identity R%.q + R%cap + B%ape = 0.

7. Symmetry of Ricci tensor
By contracting the cyclic identity R%.q + R%a + R = 0, prove that the Ricci
tensor, R., = R e, 1S symmetric.
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1. Alternative form of Einstein’s field equation
By contracting the mixed form R¥ — %Rdfj = KT} of equation R* — %Rg‘“’ = KTH
show that R = —~xT, where T' = T¥, and hence verify equation R" = R(TH —
1
=Tgh).
2

2. Ricci tensor in a static spherically symmetric spacetime
We have
R, =0,17, — 0,1, + T4, 17, — 1% 17

puo— pv uv= po

and from Exercise 9.1 we have

F81 = F(l]O — A’/QA’ 1’%0 - A,/2B, Fil _ B,/2B,

I}, =—r/B, I, = —(rsin®0)/B, T2, =132 =1/r,

I3 = —sinfcosf, TIy=I% =1/r, I3, =13, = cotd,
show that

A// A/ A/ B/ A/
e o5 53

B m\a"B) B
and Ry; =0 (i = 1,2,3).

3. Curvature tensor of a two-dimensional manifold
Show that in a two-dimensional Riemannian manifold all components of R pcp are
either zero or +Rj212. In terms of the usual spherical coordinates ! = 6 and u? = ¢,
the metric tensor field of a sphere of radius a is given by

[ = a? 0
gaBl = 0 a%sin?6 |-

Show that Rja1s = a®sin? 6, and hence deduce that

Rl = | e

—sin?
and R = —2/a’.

4. Isotropic form of Schwarzschild metric
Show that the Schwarzschild line element

2 2m\ "
Adr? = <1 — ;n) Adt? — <1 - ;n) dr® — r*df® — r* sin® 0d¢?,



where m = GM/c?, may be put into the isotropic form

2 2
Adr? = (1 — m) <1 + m) Adt?
2p 2p

4
_ (1 + m> (dp2 + p%d6? + p? sin® 9d¢2) ,
2p

where the new coordinate p is defined by

m\2
r=p 1+%
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1. Radial distance in Schwarzschild metric
Show that the length of stick laying radially (between r; and ro > r;) in Schwarzschild
metric is

2 2 _1/2
L:/ (1—m> dr:rg—rl—l—mlnEjLO(mQ/T),
T1 T rl

where m = GM /.

2. Spectral shift
Find the fractional shift in frequency, as measured on Earth, for light from a star of
mass 1030 kg, assuming that the photons come from just above the star’s atmosphere
where rg = 1000 km.

3. Particle motion in Schwarzschild metric, part I
With the variables 2° = t, 2! = r, 22 = 0, 2 = ¢ and with w as an affine parameter,
obtain the second and third (4 =1 and u = 2) of equations

d (oL oL _
dw \ O+ oxr
where

L(i%,27) = ;gm,j:“dv” = ; (1= 2m/r)c? — (1= 2m/r) "% — (0 + sin? 0 7).

Hence show that 6 = 7/2 satisfies the third equation, and with § = 7 /2 the second
equation reduces to

2 .
(1 —2m/r) 1 + mr—§i2 —(1- 2m/r)’2g7*2 —r¢? = 0.

4. Particle motion in Schwarzschild metric, part 11
Continuing the preceding exercise, show that the first and fourth equations (=0
and p = 3) give the conditions

2 . .
(1 - m) { = constant = k,  r%¢ = constant = h. (19)
r
In addition we have the condition

= (1 — 2m> e (1 — Zm)l - 7“%2

T T



for a particle using the proper time 7 as the parameter w. Based on these, check
the equation
du\® 2GM  2GM
<d¢) =BTt T
where F = ¢?(k? —1)/h?> and u = 1/r.

. Eddington-Finkelstein coordinates
Verify the form

dr? = (1 —2m/r)dv® — 2dvdr — r*df* — r* sin®  dp?

of the line element in Eddington-Finkelstein coordinates by replacing the Schwarzschild
coordinate t by v = ¢t +r + 2mIn(r/2m — 1).

. Schwarzschild radius
Find the Schwarzschild radius of a spherical object with the same mass as that of
the Earth. (Take Mg = 6 x 10?* kg, G = 6.67 x 107! Nm?kg ™2, ¢ = 3 x 10® ms™1.)



