
CMVS Research areas
The Center for Machine Vision and Signal analysis has achieved ground-breaking research results in many areas of its activity, including texture analysis, facial image analysis, 3D computer vision, energy-efficient architectures for embedded systems, and biomedical engineering. Among the highlights of its research are the Local Binary Pattern (LBP) methodology, LBP-based face descriptors, and methods for geometric camera calibration, which all are highly-cited and widely used around the world. The areas of application for CMVS's current research include affective computing, perceptual interfaces for humancomputer interaction, biometrics, augmented reality, and biosignal analysis.

Computer vision core: Image and video descriptors

Computer vision core: Face Analysis

Computer vision core: 3D vision

Multimodal perceptual interfaces

Multimodal perception for affective computing
The capability to recognize human emotions plays a significang role in applications ranging from human computer interaction and entertainment to psychology and education. In CMVS we believe that combining complementary information from different modalities increases the accuracy of emotion recognition.

Low-energy computing

Biomedical signal analysis
Individualised healthcare is a recent global megatrend aiming to improve health and wellbeing. We are developing breakthrough technologies to tackle key challenges including next generation signal analysis techniques towards personalized medicine and wellness solutions.

Biomedical image analysis
In recent years, increasing resolving power and automation of biomedical imaging systems have resulted in an exponential growth of the image data. Manual analysis of these data sets is extremely labor intensive and hampers the objectivity and reproducibility of results. Hence, there is a growing need for automatic image processing and analysis methods. In CMVS, our aim has been to apply modern computer vision techniques to biomedical image analysis which is one of our emerging research areas.