Smart Wireless Communications

D.Sc. (Tech.) Kien Vu

Kien Vu

D.Sc. (Tech.)

Centre for Wireless Communications
Wireless Communications

Biography

Kien Vu (Trung Kien Vu) received the B.Eng. University of Science and Technology, Hanoi, Vietnam, in 2012, and the M.Sc. degree in electrical engineering from the School of Electrical Engineering, University of Ulsan, South Korea, in 2014. From 2015 to 2018, he pursued the D.Sc. degree at the Center for Wireless Communications (CWC), University of Oulu, Finland. He was a Visitor at Tsinghua University, Beijing, China from Dec. 2018 to Mar. 2019. 

His research interest includes:

  • Applications of deep reinforcement learning and stochastic optimization for wireless networks,
  • 5G towards 6G networks
  • Ultra-reliable and low-latency communication,
  • UDN & V2X planning and optimization,
  • mmWave to THz communications, and massive MIMO.

Kien Vu received the Nokia Foundation grant, the Tekniikan edistanmissäätiö grant, the 2016 European Wireless Best Paper Award, and the Brain Korean Scholarship for his Master studies. He serves as a Reviewer for several major IEEE Transactions and Conferences.

MATLAB Source Code

S1: This is a Matlab code package , which is related to our research articles: "Path selection and rate allocation in a self-backhauled mmWave networks", Proc IEEE Wireless Commun.,. Netw. Conf. , pp. 2371-2376, 15-18 April 2018, Barcelona, ​​Spain, and "Ultra-reliable communication in 5G mmWave networks: A risk-sensitive approach." IEEE Commun. Lett., Vol. 22, no. 4, pp. 708-711, 2018.

Doctoral Dissertation - Integrated Access-Backhaul for 5G Wireless Networks

  • In this research, we study the main 5G technologies, concerning higher frequency bands, large antenna array and dense small cells, to support new and diverse use-case scenarios and applications for wireless networks. We propose a new system design, integrated in-band access and backhaul architecture, which jointly schedules a large number of users and provides in-band wireless backhaul to a dense deployment of small cells.

  • Our objective is to achieve extremely high data rate, low-latency with a reliability guarantee in the presence of network dynamics and scalability. Most of previous work focus on addressing one or few issues or technologies to tackle the 5G challenges; thus far, to our best knowledge, we are the first to study the problem of how to optimize overall network performance to obtain these predefined demands, while taking backhaul dynamics, traffic load, mmWave channel state into account.

  • Moreover, we exploit multiple antennas and multiple connectivity techniques to further increase the fast-reliable-high-speed communication in both single hop and multihop wireless backhauls in 5G mmWave networks. By applying advanced signal processing techniques, mathematical optimization frameworks, and machine learning tools, the research provides important solutions to establish key tradeoffs, such as between capacity and latency, and between reliability and network density/traffic load.

  • Moreover, the research results follow the project scheme, which are expected to have significant influences on the development of future wireless networks and 5G radio access systems. Finally, the research results are submitted to the highly scientific communities for publications.

  • Read more: http://jultika.oulu.fi/Record/isbn978-952-62-2243-1

Master's Thesis - Resource Allocation in Heterogeneous Networks: eICIC Approach

Abstract: Heterogeneous Networks (HetNets) are introduced by the 3GPP as an emerging technology to provide high network coverage and capacity. The HetNets are the combination of multilayer networks such as macrocell, small cell (picocell and femtocell) networks. In such networks, users may suffer significant cross-layer interference. To manage the interference the 3GPP has introduced Enhanced Inter-Cell Interference Coordination (eICIC) techniques, Almost Blank SubFrame (ABSF) is one of the time-domain technique in the eICIC solutions. In this thesis, we propose a dynamically optimal ABSF framework to enhance the small cell user downlink performance while maintains the macro user downlink performance. We also study the mechanism to help the small cell base stations cooperate efficiently in order to reduce the mutual interference. Via numerical results, our proposed scheme achieves a significant performance and outperforms the existing ABSF frameworks in terms of user throughput and outage probability.

Databases

Social media

Research groups

  • CWC-RT Radio Technologies

Selected publications

  • Vu, Kien (2019) Integrated access-backhaul for 5G wireless networks. - Acta Universitatis Ouluensis Series C Technica 703. Oulu. Monografiaväitöskirja. 132. [Original]
  • Vu, Trung Kien; Bennis, Mehdi; Debbah, Mérouane; Latva-aho, Matti; Hong, Choong Seon (2018) Ultra-reliable communication in 5G mmWave networks: a risk-sensitive approach. - IEEE Communications Letters 22 (4), 708-711 . [Original] [Self-archived]
  • Vu, Trung Kien; Liu, Chen-Feng; Bennis, Mehdi; Debbah, Merouane; Latva-aho, Matti; Hong, Choong Seon (2017) Ultra-reliable and low latency communication in mmWave-enabled massive MIMO Networks. - IEEE Communications Letters 21 (9), 2041-2044 . [Original] [Self-archived]
  • Vu, Trung Kien; Bennis, Mehdi; Debbah, Merouane; Latva-aho, Matti (2019) Joint Path Selection and Rate Allocation Framework for 5G Self-Backhauled mmWave Networks. - IEEE transactions on wireless communications online first, online first . [Original]
  • Vu, Trung Kien; Bennis, Mehdi; Samarakoon, Sumudu; Debbah, Merouane; Latva-aho, Matti (2017) Joint Load Balancing and Interference Mitigation in 5G Heterogeneous Networks. - IEEE Transactions on Wireless Communications 16 (9), 6032-6046 . [Original] [Self-archived]
  • Vu, Trung Kien; Bennis, Mehdi; Samarokoon, Sumudu; Debbah, Merouane; Latva-aho, Matti (2016) Joint in-band backhauling and interference mitigation in 5G heterogeneous networks. (Artikkeli tieteellisessä konferenssijulkaisussa). - European Wireless 2016 : 22th European Wireless Conference 18-20 May 2016, University of Oulu, Finland. University of Oulu. Ei sarjaa/No series. Berlin. 467-472. [Original]
  • Vu, Trung Kien; Kwon, Sungoh; Oh, Sangchul (2015) Cooperative interference mitigation algorithms in heterogeneous networks. - IEICE Transactions on Communications E98B (11), 2238-2247 . [Original] [Self-archived]
  • Vu, Trung Kien; Liu, Chen-Feng; Bennis, Mehdi; Debbah, Merouane; Latva-aho, Matti (2018) Path Selection and Rate Allocation in Self-Backhauled mmWave Networks. (Artikkeli tieteellisessä konferenssijulkaisussa). - 2018 IEEE Wireless Communications and Networking Conference (WCNC). IEEE Wireless Communications and Networking Conference. New York. 1-6. [Original] [Self-archived]

Research visits

  • Tsinghua University, Beijing China
    16.12.2018 to 15.3.2019

    This research visit is partly funded by the UniOGS travel grant and the Academy of Finland 6Genesis Flagship (grant 318927).

     

Projects

High-frequency wireless communications

Professor of Communications Engineering Matti Latva-aho has his research focus on high frequency wireless communication systems and 5G technology d