OXILATE - Operational eXcellence by Integrating Learned information into AcTionable Expertise
OXILATE
Funders
Project information
Project duration
-
Funded by
Business Finland
Project coordinator
Other university or unit
Contact information
Contact person
Researchers
Project description
The Finnish consortium involves two mid-cap companies working on software solutions (M-Files, Intopalo Digital), one SME (Atostek) extending its own solutions, and two large companies contributing an ecosystem to develop realistic and robust services (Valmet Automation, CP Kelco). The research partner is University of Oulu with groups of Emprical Software Engineering (M3S) and Control Engineering (ECE). The Finnish consortium focuses on developing Industry 4.0 process automation support, enhancement of data and knowledge capture to form virtual plant models and agile development of intelligent knowledge and data-intensive solutions for diagnostics, field services, and process optimization. Acquired knowledge and data form a digital twin of an industrial process, which becomes a data-intensive ecosystem for developing new applications for data analytics and intelligent interfaces to boost industry operations and services. Data intensive service support releases R & D resources from technical service support tasks to innovation activities.
Our research activities in this project aim to find flexible pre-processing, process identification and modeling methods enabling efficient use of both the operational data and outputs from the digital twins. The developed models act as digital assistants e.g. for the process operators and supervisors in applications such as predictive maintenance, real-time process performance monitoring and prediction, as well as root-cause analyses.